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Abstract 
We present a real-time strategy (RTS) game AI agent that 
integrates multiple specialist components to play a complete 
game. Based on an analysis of how skilled human players 
conceptualize RTS gameplay, we partition the problem 
space into domains of competence seen in expert human 
play. This partitioning helps us to manage and take 
advantage of the large amount of sophisticated domain 
knowledge developed by human players. We present results 
showing that incorporating expert high-level strategic 
knowledge allows our agent to consistently defeat 
established scripted AI players. In addition, this work lays 
the foundation to incorporate tactics and unit micro-
management techniques developed by both man and 
machine. 

Introduction  

Real-time strategy (RTS) games provide a rich and 
challenging domain for autonomous agent research (Buro 
2003). The goal for players of RTS games such as the well-
known Warcraft and Starcraft series is to build up armies 
capable of defeating enemy bases, while simultaneously 
defending one’s base against enemy attacks. The object 
and action complexity, combined with real-time multi-
scale play, provide a uniquely challenging domain for 
game playing agents.  
 RTS games contain a large number of unique domain 
objects and unique actions. Domain objects include 
different types of mobile units, buildings with varying 
defensive and unit production capabilities, building 
modifications, and resources that must be gathered, 
managed and spent in order to construct buildings and 
units. Actions include building and unit construction, 
choosing upgrades for buildings and units, resource 
management, and employing unit capabilities during battle. 
Action in an RTS occurs at multiple scale levels, such as 
high-level strategic decisions about which types of 
buildings and units to produce, intermediate tactical 
decisions about how to deploy groups of units across the 
map, and low-level micro-management decisions about 
individual unit actions. The combinatorics of this space of 
objects and actions precludes the use of game tree search-

based techniques that have proven useful in board games 
such as chess. To make matters more complex, a 
successful RTS player must engage in multiple, 
simultaneous, real-time tasks. In the middle of a game, a 
player may typically be managing the defense and 
production capacities of one or more bases while being 
simultaneously engaged in several battles. Finally, RTS 
games often enforce incomplete information in the form of 
the “fog of war” that hides most of the map. The player can 
only see areas of the map where she has units, requiring the 
deployment of scout units to actively gather information 
about enemy activities.  
 These attributes of the domain argue for a game playing 
agent architecture that can incorporate human-level 
decision making about multiple simultaneous tasks across 
multiple levels of abstraction, and combine strategic 
reasoning with real-time reactivity. In this paper we 
present a novel agent architecture for playing RTS games. 
Our agent is decomposed into distinct competencies that 
mirror the competency distinctions made by expert human 
players, thus providing a framework for capturing and 
expressing human-level strategic, tactical and micro-
management knowledge. Our results show that this 
approach can provide a level of play able to defeat two 
static strategies that have been used as benchmarks in the 
RTS research literature.  

Related Work  

Current research in game playing agents for RTS games 
has tended to focus on either the details of unit micro-
management, or on high level strategy decisions that leave 
tactics and micro-management to the built-in unit AI.  
Although micro-management and strategy are certainly 
two of the competencies required for RTS play, the failure 
to build integrated agents has resulted in agents able to 
play only one small facet of the game or to not be able to 
play the game at competitive levels.  
 A number of researchers have focused on applying a 
single algorithm to a single facet of RTS game play: Monte 
Carlo planning over unit micro-management scenarios 
(Chung, Buro and Schaeffer 2005); PDDL used to explore 
the tactical decisions involved in building orders 
(Kovarsky and Buro 2006); and RMDPs used to generalize 
strategic plans (Guestrin et al. 2003). While each of these 
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systems provides local improvements, none are integrated, 
comprehensive agents capable of competently playing a 
full game. 
 Evolutionary learning on tactical decisions using 
dynamic scripting (Ponsen et al. 2006), and case-based 
reasoning over human player traces (Ontañón et al. 2007) 
both take the next step by being capable of playing entire 
games. However, they each use a single component to do 
strategic, and limited tactical, reasoning. Unit micro-
management is relegated to the simple-minded unit 
behaviors in the game engine. Additionally, while the case-
based agent uses traces of human play to build a case 
library, the human players employed are weak compared to 
professional RTS players. Our agent uses expert 
knowledge gathered from professional players. 
 The SORTS agent is capable of playing an entire 
standard RTS game, including the use of high level 
strategy (Wintermute, Xu and Laird 2007). SORTS 
includes algorithms based on human perception to form 
unit groups and to focus attention. Unit micro-management 
is handled in the middleware with the use of finite state 
machines (FSMs). To enable a larger degree of tactical 
coordination between units, the FSMs that handles military 
and resource gathering units are managed by global 
coordinators. These coordinators employ simple learning 
to enhance the efficiency of the agent. High level strategic 
reasoning takes place in the Soar portion of the SORTS 
agent. While SORTS is an impressive system capable of 
playing complete games, and integrating multiple modules, 
improvements can still be made. Our agent adds the use of 
a reactive planning language capable of more tightly 
coordinating asynchronous unit actions in unit micro-
management tasks, decomposes the agent into more 
distinct modules (domains of competence) and includes 
more expert human knowledge. 
 As we describe in this paper, strategic reasoning is 
fundamental to any agent whose goal is to competitively 
play RTS games. Furthermore, we show that there is a 
wealth of expert RTS knowledge that has yet to be 
leveraged in RTS AI research. 

Expert RTS Play  

Expert RTS play is as deeply skillful as expert chess play. 
Expert players and RTS communities have developed 
standard strategies, micro-management and tactical 
techniques. As in chess, part of expert play involves 
selecting techniques at multiple levels of abstraction in 
response to recognized opponent strategies, tactics and 
micro-management, and improvising within these 
techniques. But, as described in the introduction, the 
complexity of an RTS game (number of domain objects, 
parallel, asynchronous action, etc.) far exceeds chess. Even 
the physical skill involved in RTS play is daunting; expert 
human players routinely exceed 300 actions (distinct 
interface manipulations) per minute. The best players make 
handsome livings as full-time professionals in RTS 
leagues. In developing our integrated RTS player, we 

mined information available on expert techniques and rules 
of thumb (e.g. http://www.battle.net/war3/), as well as 
expert commentary on championship games (e.g. 
http://www.youtube.com/watch?v=IcPxu1RkeRU), and 
used this to determine the required competencies of our 
agent.  
 General rules of thumb have been distilled by the expert 
player community. Getting “behind on economy” almost 
guarantees a loss at expert levels. Like any rule of thumb, 
there are specific situations and strategies in which the rule 
is violated. For example, the “Probe Stop” involves halting 
economic expansion in favor of putting all available 
income into military production, causing a temporary spike 
in military strength. Managing the economy (collection and 
consumption of resources) in order to maximize mass-
production of military and production units is a major 
subtask of expert play. 
 Human-developed unit micro-management techniques 
contain a subgroup that is applicable to nearly all RTS 
games. One of the basic micro-management techniques is 
dancing. Dancing is a specific use of ranged units in which 
a group of units attacks simultaneously, then “dances” 
back during their “cooldown”, the unit’s recovery period 
between attacks. This allows the ranged units to be as far 
away from the opposing units as possible during their 
cooldown period, without sacrificing offensive position.  
 Techniques such as dancing are called micro-
management because they involve controlling the detailed 
movements of individual units. In the absence of micro-
management, units respond to high-level directives (such 
as attack) using very simple built-in behaviors. Micro-
management involves real-time decision-making on the 
part of the player and is another major subtask of the RTS 
player. 
 Tactics entails unit deployment and grouping decisions. 
Unlike micro-management, tactics involves coordinating 
groups of units to perform specific tasks. One tactic, 
commonly seen in the early game of Warcraft III 
(http://www.battle.net/war3/), involves coordinating units 
to block an enemy retreat, often using area effect attacks or 
blocking terrain bottlenecks with units. Tactical decision 
making, including a knowledge of common tactics and 
counter-tactics, is a significant subtask for the expert RTS 
player.  
 In RTS games, the map is only visible in a limited radius 
around friendly units. This requires active reconnaissance 
to gather information about the location and activities of 
enemy units. A common reconnaissance method early in 
the game is to send a worker around the map to find the 
enemy base. Base reconnaissance reveals the progress and 
nature of the economic build-up (revealing information 
about which strategies the enemy is likely following) and 
the physical layout of the base (e.g. is the base highly 
fortified against ground attacks). Reconnaissance is thus a 
significant subtask for the expert RTS player.  
 Finally, expert players develop and deploy high-level 
strategies. Strategies coordinate the style of economic 
buildup, the base layout, and the offensive and defensive 



style. The knight’s rush is a strategy found in Warcraft II. 
The knight is a heavy melee unit available in the middle of 
the technology tree (the tree of dependencies between 
different unit and building types). In general RTS terms, a 
knight’s rush is a heavy attack with units in the middle of 
the tech tree as soon as they are available. With this 
strategy, the economy is expanded as much as possible 
while researching the technology and constructing the 
buildings necessary for knights, with little to no resource 
spent on defensive units. This strategy leaves a player 
vulnerable until the ability to create knights is obtained, as 
early defense is traded for later offensive power. 
 Human experts decide on a high-level strategy very 
quickly at the beginning of the game, based on information 
such as the map size and number of opponents. This initial 
strategy selection determines the initial production order of 
buildings and units. For example, a small map favors a 
push for early military units, as attacks come earlier in the 
game. However, players must often switch strategy based 
on information gained through reconnaissance. Strategy 
determination, execution and switching is the last major 
subtask of the expert RTS player. The subtasks identified 
in our analysis of human expert play inform the managers 
of our integrated RTS agent.  

Framework 

The software framework of our agent consists of the ABL 
reactive planning language connected to the Wargus RTS 
engine.  

ABL 
ABL (A Behavior Language) is a reactive planning 
language similar in flavor to belief-desire-intention 
architectures such as PRS (Georgeff and Lansky 1987), 
though an ABL program does not require a commitment to 
a formal domain model. ABL serves as the glue for our 

integrated agent. Different distinct competencies 
in our agent, which can make use of distinct 
problem solving techniques, communicate with 
each other through ABL’s working memory, and 
through ABL’s dynamic subgoaling mechanism.  
 ABL, based on the Oz project believable agent 
language Hap (Bates, Loyall and Reilly 1992), 
adds significant features to the original Hap 
semantics, including first-class support for meta-
behaviors (behaviors that manipulate the runtime 
state of other behaviors) and for joint intentions 
across teams of multiple agents (Mateas and 
Stern 2002).  
 Although ABL was originally designed to 
support the creation of autonomous believable 
characters, it has many features that work well in 
the space of RTS AI. Playing an RTS game 
requires the player to pay attention to many 
facets of the game simultaneously, reacting 
quickly and appropriately at multiple levels of 
abstraction including strategy, tactics and unit 

micro-management. Good RTS play requires a 
combination of deliberative, planful activity and real-time 
responsiveness to changing game conditions. ABL was 
precisely designed to combine reactive, parallel goal 
pursuit with long-term planfulness.  

Wargus 
Wargus is a clone of the game Warcraft II and its 
expansion, Tides of Darkness, both of which were 
developed by Blizzard Entertainment™. This clone is 
rendered in the open source RTS game engine Stratagus 
(Ponsen et al. 2005). The open source nature of Wargus 
allows integration with ABL and access to any part of the 
game state that Wargus itself has access to. 
 Another beneficial quality of Wargus is that it has an 
external AI scripting language, based on Lua, through 
which new agents can be added and existing agents can be 
modified. This scripting capability affords the creation and 
importing of a range of AI scripts with which to test our 
agent. 

Agent Architecture 
Our agent is composed of distinct managers, each of which 
is responsible for performing one or more of the major 
subtasks identified in our analysis of human expert play. 
As seen in Figure 1, the agent consists of income, 
production, tactics, recon, and strategy managers.  
 The first competency we have focused on is strategy, as 
strategic competence is required to play a complete game. 
Several of the other managers have been implemented with 
just enough functionality to provide an interface to the rest 
of the managers comprising the agent. By factoring our 
agent based on the study of expert play, we are able to 
easily modify individual managers and study the effect of 
increased or decreased competence of a specific manager 
on the overall strength of the agent.  
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Figure 1 - This graph shows a small sample of the dependencies managers 
have on one another.  The blue boxes are managers with abbreviated names 
(TM is tactics manager, RM is recon manager, etc).  At the bottom of the 
graph are game entities found in Wargus. 



Strategy Manager. The strategy manager is responsible 
for high level strategic decisions. The manager is 
composed of modules, which consist of behaviors 
implementing rules and associated ABL working memory 
elements.  
 The first task the strategy manager performs is to 
determine the proper initial order in which to construct 
buildings and units (the first 30 to 90 seconds of game 
play). The InitialStrategy module utilizes the recon 
manager to determine the distance between the agent’s and 
opponent’s starting locations on the game map, using 
thresholds to determine if the distance is small, medium, or 
large. Currently we use manually determined thresholds to 
make this determination, though there is certainly an 
opportunity for adaptation here. For small distances, the 
initial strategy involves constructing barracks and military 
units before the construction of a second farm (to support 
more workers); this allows the agent to defend against 
early attacks, as well as potentially perform an early attack, 
at the cost of an economy that grows slightly more slowly 
at the beginning. For medium distances, the initial strategy 
maximizes economic production; for separated enemies, 
there is time to build a robust economy and a significant 
military force before engaging in battles. This involves 
creating new workers without pause during the early game, 
and setting the default unit creation mix in the production 
manager to one worker to one soldier (the production 
manager will start creating soldiers when the preconditions 
for soldier creation, namely the construction of a barracks, 
have been fulfilled). Currently, for large distances, 
InitialStrategy performs the same behavior as for medium 
distances. This distinction between large and medium 
distances will be useful when the recon manager is 
sophisticated enough to determine suitable locations for the 
construction of additional bases; for small and medium 
distances, base attacks generally occur before there is time 
to build additional bases.  
 The next module, TierStrategy, is the highest priority 
recurring task in the strategy manager. “Tier” refers to the 
technology level achieved by the agent during economic 
production; different types of units become available as 
new building types are constructed (there are precondition 
relationships between building types that force a player to 
build up through the tiers). At each of the three tiers in 
Wargus, TierStrategy responsibilities include maintaining a 
unit control cap with regards to production capacity (i.e. 
construct the correct amount of farms), building a 
military/economic force superior to that of the opponent, 
and attacking when the agent has a military unit advantage. 
Our agent currently has a large amount of knowledge for 
tier one strategy, a small amount for tier two, and no 
knowledge for tier three. In future work, we will be 
expanding strategic competence for tier three, though there 
are no existing strong AI players we can test against for 
tier three.  
 TierStrategy starts making decisions after the initial 
building order controlled by InitialStrategy is complete. A 
primary responsibility for TierStrategy is determining 

which buildings and units are to be produced at any point 
in the game past the initial build order. For tier one, the 
agent grows economic and military unit production 
capacity as quickly as possible. To this end, the module 
continuously trains workers until the agent controls at least 
ten (unless InitialStrategy has primed the production 
manager to produce soldiers early, in which case soldier 
production is mixed in with worker production).  
 After the initial economic buildup, TierStrategy begins 
production of military capacity. Two barracks and a 
blacksmith are built sequentially after eight workers are 
available. After the first barracks has finished, the agent 
trains one soldier at the barracks for every new worker 
created. After all military production buildings are 
finished, the agent builds two soldiers for every worker. 
During all of this, TierStrategy monitors how many units 
can be supported given the current number of farms, 
ordering the construction of new farms to support 
increasing unit numbers.  
 At any time during tier one, three variations of the 
human developed “probe stop” strategy (in which all 
production shifts to military units) can occur. After twenty 
workers are created, the agent has enough income to 
continuously build grunts from both barracks while 
upgrading their offensive and defensive capacity via the 
blacksmith. At this point, only upgrades, soldiers, and 
farms to support new soldiers are created. Additionally, if 
the opponent has a lead of more than three military units, a 
probe stop is performed. When the agent has a deficit of 
more than two workers, the agent performs a reverse probe 
stop; all military production is halted in favor of ramping 
up resource gathering and production capacity.  
 As the game balance of Wargus is skewed toward heavy 
melee units, the tier two production strategy is to simply 
build a stables (the building which enables the construction 
of knights) and produce as many knights as possible. 
 TierStrategy is also responsible for determining when to 
attack, given the number of military units controlled by the 
agent vs. the opponent. This decision is currently made via 
empirically determined static thresholds: a 3 unit 
advantage in favor of the agent for tier one, 5 for tier two, 
and 8 for tier three.  

Income Manager. The income manager is responsible for 
the details of controlling workers who gather resources, 
releasing workers for construction and repair tasks, and 
maintaining a gold to wood income ratio set by the strategy 
manager.  
 The first action performed by the income manager is to 
set the gold to wood income ratio given by the strategy 
manager. After the ratio is set, the manager is given 
workers, who have no assigned task, from the production 
manager.  The newly assigned workers are placed in a 
resource list with regards to keeping the actual gold to 
wood income ratio closest to that set by the strategy 
manager. 
 The final responsibilities are to release workers for 
construction tasks (requested by the production manager) 
and repair tasks (by either the production or tactics 



manager) and to put workers on the appropriate resource 
task if the strategy manager changes the income ratio. 

Production Manager. The production manager is 
responsible for constructing units and buildings. At the 
heart of the production manager are modules that service 
three priority queues: a unit production queue, a building 
production queue, and a queue for repeated cycles of unit 
training and building construction.   
 Unit production pursues the training of the highest 
priority unit in the unit queue, ensuring that there are 
sufficient resources, and that the appropriate production 
building is free (e.g. barracks for training soldiers). 
Building production pursues the construction of the highest 
priority building, appropriately locking construction 
resources. This is necessary because simulation time passes 
between when the decision is made to build and a worker 
reaches the building location; without locking, resources 
would be spent elsewhere during this delay, causing the 
construction to fail.   

Tactics Manager. The tactics manager takes care of unit 
tasks pertaining to multi-unit military conflicts.  The tactics 
manager has three modules.  The first assigns all military 
units to a unit group.  The tactics manager provides an 
interface for high level control of the military unit group 
for use by the strategy manager. All basic military unit 
commands (attack, move, patrol, stand ground, etc) are 
made available to the strategy manager. More abstract 
commands, like attacking the opponent’s base, are also 
made available.  Keeping the military unit group on task is 
the responsibility of the second module.  The final module 
removes slain units from the military unit group. 

Recon Manager. As one of the managers that has just 
enough functionality to properly interface with the other 
managers, the recon manager uses aggregate unit 
information (number of military and worker units per 
player) and perfect information. The tactical and strategy 
managers request aggregate information from the recon 
manager. All academic and commercial RTS AIs currently 
make use of perfect information. As we develop the recon 
manager, we will remove the assumption of perfect 
information so that the recon manager must manage units 
in reconnaissance tasks. 

Manager Interdependence 

In this section we describe the relationship between the 
managers, and how the individual manager competencies 
are integrated to play a complete game. We demonstrate 
this through thought experiments where we examine the 
effects of removing individual managers.  
 If the income manager was removed, the agent would 
have no income and the production manager would be 
limited to using only the initial set of resources.  
Furthermore, there would be no method for the production 
manager to acquire a worker for construction or repair 
tasks.  Under the default Wargus starting conditions, the 

agent would only be able to build four workers (which 
would sit idly by the town hall) and do nothing else. 
 If the production manager was removed, the agent 
would have no facilities to produce new units or buildings.  
This would result in the agent only being able to use the 
initial worker to either gather gold or lumber for the length 
of the game. 
 By removing the recon manager, the agent would have 
no way to sense its opponents or its own units, resources, 
and buildings, as well as have no knowledge of the map. 
The agent would not be able to perform any game actions. 
 With no tactics manager, the agent would not be able to 
coordinate multiple units for attack or defense. All 
economic and production tasks would proceed normally, 
but the agent could never attack; it would keep all units at 
its starting location, and engage in uncoordinated defensive 
battles when opponents attack (using the Wargus built-in 
default defense behaviors) until it is defeated.  The best 
outcome one could hope for is a draw, brought on by the 
opponent running out of resources. 
 The removal of the strategy manager would result in 
agent capabilities similar to the removal of the production 
manager.  Due to the strategy manager making all of the 
production and attack requests, the only actions the agent 
could perform would be the initial worker being told to 
gather resources by the income manager. The tactics 
manager could be used without the strategy manager to 
manage individual battles, but only given that initial battle 
conditions are set at the start of the simulation.  

Results 

The above section describes how the discrete competencies 
of the agent integrate to support the ability to play a 
complete RTS game. In this section we provide empirical 
results that the integrated agent performs well against two 
benchmark scripted AI opponents: the soldier’s rush, and 
the knight’s rush. Our agent outperforms the best reported 
results against these scripts. A soldier’s rush involves 
staying at technology tier one, building a large collection 
of soldiers (weakest melee unit) and rushing the enemy 
base, presumably before they have had time to build a 
significant defensive force. The knight’s rush involves 
building to technology tier two, building a number of 
knights, and attacking the enemy. Each script was tested on 
two maps. The first map was of a medium size (96 by 96 
tiles) while the other was of a large size (128 by 128 tiles). 
Both maps had clear land routes between our agent’s base 
and that of the scripted opponent. Each map and opponent 
combination was played 15 times. 
 As seen in Table 1, our agent bests the soldiers’ rush 
most of the time on both maps. From analysis of the 
games, the lower win rate on the medium map was due to 
having less time to prepare for the early and vicious attack 
characteristic of the soldier’s rush. The large map afforded 
the agent more time to build military capacity which 
resulted in better defense from the rush. 
 



 Medium Map Large Map Both Maps 

Soldier Rush 73% 86% 80% 

Knight’s Rush 60% 46% 53% 

Table 1 – The percentage of games our agent won against 
each scripted opponent on each map. 

 By winning over half of the games played against the 
knights’ rush, our agent has performed quite well in 
comparison to other Wargus agents. The knight’s rush is 
considered a “gold standard” of a difficult scripted 
opponent. Other agents have defeated the knight’s rush 
script, but have done so less frequently; our agent won 
53% of the games against the knight’s rush, while the 
highest reported win rate in the literature is 13% (Ponsen et 
al. 2005). Ponsen, in fact, hypothesizes that the knight’s 
rush is an optimal Wargus strategy, as an explanation for 
why evolutionary learning plus dynamic scripting fairs 
poorly against the knight’s rush. Expert human players, on 
the other hand, consider the knight’s rush a fairly weak 
strategy, that they would only employ against a player with 
insufficient reconnaissance. If you know a player is 
performing a knight’s rush, the counter-strategy is to 
perform a soldiers rush; while the enemy is spending all 
their economy on teching up to tier two, so they can 
produce knights, they are not building defensive forces, 
making them vulnerable to a soldier’s rush. This is in fact 
what our strategy manager does, if it recognizes the enemy 
as performing a knight’s rush.  
 Many of the losses suffered by our agent were due to the 
lack of sophistication of the tactics manager. Specifically, 
the tactics manager fails to concentrate military units in an 
area in either offensive or defensive situations. When many 
parallel decisions are being made elsewhere in the agent, 
small delays can be introduced in sending tactical 
commands to individual units, causing units to trickle 
towards engagements and be easily defeated. Future work 
in the tactics manager will focus on explicit formation 
management.  

Conclusion 

In this paper we have demonstrated an integrated agent 
capable of playing a complete RTS game. In contrast to 
other RTS agents in the literature, which have tended to 
employ an individual component to address a single aspect 
of the game (e.g. reinforcement learning for tactical 
management of small battles) or an individual component 
applied uniformly across the whole game (e.g. case-based 
retrieval of actions), our RTS agent employs multiple 
managers, where the needed managers were identified by a 
knowledge-level analysis of human expert play; the 
managers are integrated using the ABL reactive planner. 
 As we continue to develop our agent, the integrated 
modular architecture will allow us to strengthen individual 
competencies, and experiment with different techniques 
within different modules, while easily being able to test the 
effect on the global behavior of the agent. For example, in 
current work, we are integrating an HTN planner into the 

strategy manager to construct build orders, and adding 
behaviors to the tactics manager for formation 
management and dancing.  
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