
Interactive Story Generation for Writers: Lessons Learned

from the Wide Ruled Authoring Tool
James Skorupski

University of California, Santa Cruz
1156 High Street

Santa Cruz, CA 95064

jskorups@soe.ucsc.edu

Michael Mateas
University of California, Santa Cruz

1156 High Street
Santa Cruz, CA 95064

michaelm@soe.ucsc.edu

ABSTRACT

The authoring of interactive, generative narrative is a task that

typically requires an extensive multi-disciplinary background in

computational and narrative theory. Wide Ruled is an authoring

tool that aims to address this problem by providing a friendly,

intuitive, story-centric interface to an author-goal driven text-

based story planner. Over the past two years, this system has been

used repeatedly by technical and non-technical users in multiple

classroom settings, and evolved into a widely used and publically

available story authoring system. In this work, we describe the

successes and failures of Wide Ruled, and how it provides a

critical evolutionary step in developing a truly usable, writer-

friendly, and practical interactive story authoring environment.

1. INTRODUCTION
As interactive entertainment becomes a more pervasive element of

our culture, the potential for meaningful narrative experiences will

only be realized if we can create tools that open their authoring to

a much wider audience. Typically, creating the generative stories

that drive these experiences requires technical expertise in

computational models of story planning and structure, as well as

the knowledge to formulate compelling plot arcs, rich dialog,

character conflicts, and other story elements. Unfortunately, the

existence of these cross-disciplinary experts with the relevant

technical and creative backgrounds is a rare occurrence. Wide

Ruled is a freely and publically available1 story authoring tool that

attempts to reduce this required technical expertise and bridge the

divide between algorithms and art by providing a non-technical,

writer-oriented authoring interface to a text-based interactive story

generator. It is based on an existing author-goal driven model of

story generation, called UNIVERSE, which models story structure

as a set of hierarchical plans that encompass one or more ways to

accomplish a story goal for the author. Wide Ruled uses non-

technical narrative terminology wherever possible, natural-

language descriptions of plan preconditions and actions, and step-

by-step guidance in building complex constraints and

modifications of the story world [13]. Ultimately, it aims to

provide an authoring environment that provokes a feeling of

familiarity and relevance to the task of story-telling, and at the

same time maintains the flexibility and power of the underlying

planning engine.

The development, deployment, and evolution of Wide Ruled over

the past two years as a practical tool for story writers has provided

abundant and essential feedback on the experiences of student

authors of varying technical and non-technical backgrounds.

Users both comfortable and unfamiliar with the mathematical and

programmatic concepts embodied in the underlying technology

have used the tool to create individual generative stories, and the

feedback from students, teaching experience of the authors, and

the resulting stories made with the tool have in turn driven the

continued evolution of the system and motivated further work in

story authoring research. This information has given us a unique

view of the strengths and weaknesses of Wide Ruled as a usable

piece of software for story authoring.

In this paper, we will review the story generation model and

capabilities of Wide Ruled and its evolution over the course of its

two major versions, and then compare our expectations of its use

as an authoring tool to its actual use in classroom settings. We

will discuss both quantitative metrics of user-created stories as

well as the qualitative experiences of both the students that used

the system and the authors that helped these students understand

it. Finally, we describe our future work on story authoring tools

informed by the lessons learned from Wide Ruled. 1

2. RELATED WORK
The complexities of authoring interactive stories have been

discussed in detail in previous work. Many story authoring tools

are built around the creation of story graphs, which require an

author to statically represent every potential story path [1, 6, 11,

12, 15]. While these storygraph systems utilize a readily

understandable and visualizable model of the space of potential

stories, they lack the power of a generative formalism such as our

own model, and require the explicit creation of a combinatoric

space of story fragments, ultimately limiting the size and

variability of the interactive story space to that which can be

reasonably specified manually by the author. Wide Ruled, on the

other hand, utilizes a plan-based approach that allows reuse of

author goals in various points in the story space, as well as

dynamic binding of variables in story plans, resulting in varying

output depending on the state of the story world during execution.

Existing research has explored other plan-like representations of

stories that differ from author-goal driven style present in Wide

Ruled [4, 14].

Wide Ruled is based on the UNIVERSE author-goal based story

generation model developed by Lebowitz [7, 8] (described later in

this paper) and is unique in that it is the only deployed and

publically available story generator based on that model, and also

1 Wide Ruled is available for download from http://eis.ucsc.edu

http://eis.ucsc.edu/

among a relatively small population of interactive story authoring

systems that have been distributed and widely utilized as a

practical tool, beyond the typical bare research implementation

useful only as a proof-of-concept. Previous story authoring

systems used and evaluated in real-world settings include the

hypertext-based StorySpace system [2], and the virtual world

authoring tool Bowyer, an extension of the Bowman mixed

initiative narrative planning system [3, 14]. StorySpace has

proven to be a popular, successful and practical authoring tool,

but represents stories in a static graph-like manner that lacks the

generative formalisms of our story model. Bowyer, on the other

hand, is used to construct graphical virtual worlds and is based on

a powerful hierarchical task network planning architecture

(similar to our own hierarchical story model), but its evaluation

focused on constructing and executing highly technical plan

domain specifications and was aimed at planning researchers,

instead of non-technical story authors. Our work, in contrast,

exposes non-technical as well as technical users to the power of

plan-based story generation, and evaluates our system as a

complete interactive story creation environment.

3. THE WIDE RULED STORY MODEL
The story generation model in this tool is based on the HTN-style

UNIVERSE model of story planning [7, 8] which models story

structure as a set of hierarchical plans that encompass one or more

ways to accomplish a story goal for the author. This style of story

execution was chosen due to its success with students in previous

Interactive Narrative classes [13]. A Wide Ruled story contains a

set of author-created story objects, represented as “Characters” or

“Environments”, each with associated attribute-value trait pairs,

and relationships to other characters or environments,

respectively. The story also contains a set of “Plot Point Types”,

which define categories of episodic attribute-value data generated

and utilized only during the story generation process. “Author

Goals”, with optional parameter variable inputs, are the primary

unit of story planning in this tool, each one relating to one or

more “Plot Fragments” that describes a set of actions that fulfill

its parent author goal. Plot fragments have ordered precondition

constraints that must all be true before execution. These

constraints rely on the current state of the story world during

generation and can also bind story objects and their attributes to

local variables for later use in that same Plot Fragment.

Additionally, plot fragments contain a list of sequential “Story

Actions” that can modify the story world during execution. These

actions can modify story characters, environments, and plot point

instances bound in the precondition, create and delete instances of

plot point types, calculate new values, print out story text

parameterized by bound variables (the actual textual output of the

story seen by a reader), and pursue other author goals. A complete

description of story actions is detailed in our previous work [13].

Story generation in Wide Ruled begins with a top-level initial

author goal, which randomly selects amongst all executable plot

fragments with valid preconditions, and then sequentially executes

all of its contained story actions to successfully complete a story.

If the generator encounters a story action that pursues another

author goal, the process repeats and a new random plot fragment

is executed. The relationship between author goals and their

associated plot fragments describes a potential tree-like space of

stories, in which a single generated story is represented as a

traversal of the tree, as seen in Figure 1. The original UNIVERSE

model was not interactive, so we implemented story interactivity

in two different ways for each version of Wide Ruled, one method

based on plot fragment selection intervention, and the other based

on asynchronous goal execution. Both of these interactivity

models are described in the later sections of this paper.

The output of a Wide Ruled story is a string of sequential text

generated by any plot fragments that display text as part of their

story action list. The variation in each textual story derives from

the parameterized nature of each of these blocks of outputted text.

Information from characters, environments, and plot points in the

story world are captured and stored within preconditions inside

each plot fragment, and then modified and printed to the screen in

these text blocks. A combination of static hand-written text,

interspersed with that dynamically bound variable information,

results in story variations dependent on the particular story being

generated. This resulting text is displayed in a reading interface

that prints the text in real time as it is generated by the system.

Figure 1. The Wide Ruled Story Hierarchy. “G” nodes

represent author goals, “P” nodes represent possibly selected

plot fragments, “A” nodes represent sequentially-executed

story actions, and the gray overlay represents a single instance

of a story, executed top-down, within this potential story

space.

4. AUTHORING IN WIDE RULED
The story generation model behind Wide Ruled, and the interface

itself, supposes specific techniques for creating an interactive

narrative. In this section we will describe the key authoring

techniques supported by the system and taught to the students that

used the system in the classroom, and provide examples of the

techniques in the context of the sample murder mystery story

world that is provided to these students.

4.1 Characters and Environments
Characters and environments in Wide Ruled are objects that

contain a shared list of “traits”, or attribute-value pairs, and

“relationships” to other characters or environments, respectively.

They hold character or environment-specific numeric, true/false,

and textual information, and the common traits and relationships

can be added, renamed, and deleted by users. In the murder

mystery example story provided to students, characters hold traits

such as their name (text), age (number), whether they can

potentially be a victim (true/false), whether they are a detective

(true/false), their personal description (text), and other traits. Each

murder mystery character also has a set of relationships, including

“friend”, “enemy”, and “co-worker”, that connect each character

to other characters in the story world. Similarly, the environments

in the murder mystery contain traits such as location descriptions

(text), the time of day (text), and relationships that include hiding

locations for mystery clues in each place, and secret hideouts for

potential murderers that are near these environments. In general,

characters and environments, along with plot points described in

the next section, are designed to hold core pieces of story

information and in turn be manipulated by actions within plot

fragments..

4.2 Plot Points
Plot points are story objects that contain a list of traits, similar to

characters and environments, but no relationship information.

They are intended to be used as an information store for important

episodic story information that exists only while a single story

instance is being generated. For example, in the murder mystery

story world, multiple plot points are used to store various

murderer, victim, and detective information, which are all key

components of the plot of each generated story. The “murderer”

plot point, specifically, is used to keep track of the name of the

character that is chosen to be the murderer (text), and the name of

their hideout locations (text). Because plot points are meant to be

a temporary episodic story memory, during authoring, Wide

Ruled lets the user specific the type of traits (numeric, true/false,

or textual) that are contained within each plot point type, but not

the content of any specific plot point instance (which is

determined at generation time), in contrast to characters and

environments. Any initial story information stored before

generation is intended to be stored within character or

environment traits or relationships.

4.3 Story Structure
The structure of a Wide Ruled story, as previously mentioned, is

contained within the hierarchical arrangement of author goals and

plot fragments specified by an author. Author goals are designed

to be high level intentions of the author. In the murder mystery

story world, these include “Select a victim”, “Select a Murderer”,

“Select a Detective”, “Kill the victim”, and “Investigate clues”. In

our murder mystery, we want a static set of author goals executed

in order to provide a high level structure of our story. In this story

world, we want the following list of author goals to occur

sequentially as subgoals within the top level “Create Murder

Mystery” author goal: (1)“Select a Victim” – choose a victim

from the list of characters, (2)“Select a Murderer” – choose a

murderer, who isn’t the victim, from the list of characters, (3)

“Murder Victim” – have the selected murderer kill the victim in

some way, (4) “Select a detective” – choose a detective, who isn’t

the murderer or victim in this particular story, to investigate the

case, (5) “Investigate Murder” – have detective investigate crime

scene in some way and interview some people, following any

clues he or she finds, and (6) “Solve case” – have detective put

clues together, identify murderer, and catch said murderer. As

seen in these specific examples, these author goals are very

general, and meant to convey high level author intention for the

progression of the story plot. Plot fragments, however, are

intended to be specific ways a story can enact an author goal. The

“Select a Murderer” author goal has two plot fragments, “Random

murderer” and “Enemy of the victim”, as two different ways of

choosing the murderer for an instance of the story. During

execution, only one of these options will be chosen, depending on

the state of the story world at the time. Ideally, a higher quality

story world contains more variation in each story instance, and

therefore many plot fragments. The depth and breadth of this story

tree should be high, where author goals have many ways of being

completed by various plot fragments, and each plot fragment has

complex substructure in the form of numerous subgoals. The story

structure for the sample murder mystery is displayed in Figure 2.

Author goals contain a list of plot fragments, and a list of

parameters. Parameters are pieces of textual, numeric, or true/false

information that can be given to an author goal, and passed along

to a selected plot fragment during story generation. Similar to

parameters to functions in traditional programming languages,

they are intended to store and pass along temporary story

information that is useful for a specific author goal, but may not

necessarily warrant persistent storage in a more global manner,

such as within characters, environments, or plot points. In our

sample story, the name of the victim’s friend, only used once in

the story, is passed into a subgoal in order to be included in text

describing the investigation of the crime through interviews with

family and friends.

4.3.1 Plot Fragment Preconditions
During generation of a story in Wide Ruled, the precondition for

each plot fragment is a list of requirements that determines

whether it is eligible to be selected as a possible way to complete

an author goal. These requirements are a list of constraints on the

traits and relationships within characters, environments, and plot

points, and every constraint must be true simultaneously for the

plot fragment to be valid and ready to use within a story.

Preconditions can capture individual traits, relationships, and

entire characters or environments, and then perform story actions

on that information. Particularly complex precondition statements

contain a series of statements that capture, or bind, information to

named variables, and then use them within another part of a

precondition. For example, in the murder mystery story world, the

plot fragment named “Enemy of the victim” first binds the name

of the victim, and then uses this information to further find the

name of the victim’s enemy, using the enemy relationship

attribute. This requires two separate constraints, in the following

order:

1. There exists a Victim Plot Point, where trait

“victim name” is saved as variable “victimName”.

2. There exists a Character, where trait “name” =

victimName, and relationship “enemy” target name

is saved as “enemyName”

The first constraint locates the plot point that is currently storing

the name of the selected victim found earlier in the generation of

the story and saves it, while the second constraint uses that victim

name to find the victim character and capture the name of that

victim’s enemy. While not described here, preconditions can also

take the form “There does not exist …” which allows an author to

require that a story object with certain constraints does NOT exist

in the story world. The natural-language description of these

constraints is discussed in section 5. In addition to storing traits

and relationships, a precondition can save an entire character,

environment, or plot point to a named variable. Parameters from

author goals can be used within the precondition constraints, and

any named variable created within a constraint can also be used in

story actions, described in the next section.

4.3.2 Plot Fragment Story Actions
Story actions are sequentially performed steps that occur when a

plot fragment is valid and selected during story generation. The

primary story action, responsible for the narrative output of Wide

Ruled, is the parameterized text output action. This step is a block

of author-specified text, which can be filled with named variables

captured in the precondition, or generated by other actions

performed before it. During story generation, these variables are

bound to numeric, true/false, or textual information from the story

world and printed to the screen. For example, in the following

snippet of parameterized text from the plot fragment called

“Reveal Murderer” in the murder mystery story world, the names

between the brackets are relevant story variables that will be filled

in at generation time:

<enemyName> appears out of the darkness as the

evil murderer, and escapes into the distance to

seek shelter at <hideoutName> from the inevitable

eyes of the police.

At story generation time, this text can, depending on the selected

enemy and crime location, become one of many variations, such

as the following (italics added for emphasis):

Gene Franks appears out of the darkness as the

evil murderer, and escapes into the distance to

seek shelter at the abandoned warehouse from the

inevitable eyes of the police.

Figure 2. The sample murder mystery story structure

provided to students with Wide Ruled 2. Non-subgoal actions

are omitted in this diagram for clarity. Arrows represent

recursive subgoal story actions, resulting in author goal

repetition within the generated stories. The goals surrounded

by a dotted border indicate the same author goal being reused

multiple times in the story hierarchy.

In addition to parameterized text output, story actions are

responsible for modifying the story world, and can therefore insert

numbers, true/false values, text, and other named variables into

saved characters, environments, and plot points. Here, plot points

can be created and deleted as they are needed during story

generation. Calculations, where named variables or newly created

named variables can add, subtract, multiply, and divide numbers

or other named variables, can also be performed as a story action,

and saved for later use. Finally, subgoal actions are an essential

story action within Wide Ruled. This type of step allows an author

to select an author goal to execute, and pass along any desired

parameters if so desired. When that subgoal is finished being

explored, the story generator will return to the current plot

fragment and continue enacting any remaining story actions. This

subgoaling power allows for very complex story worlds to be

represented hierarchically, and allow each plot fragment to simply

point to high level goals, which are authored separately and can

be reused in multiple plot fragments elsewhere. Figure 2 shows

how subgoals can result in complex story world arrangements.

Specifically, the two similar subtrees of the hierarchy on the left

side of that story world represent two different plot fragments

with different textual output and story actions, that, within them,

subgoal the same author goal (highlighted by dotted borders). In

addition, the center portion of the tree shows four plot fragments

that recursively call a previous author goal, resulting in a looping

story construct during generation.

4.4 Common Authoring Techniques
Throughout the development and classroom usage time of Wide

Ruled, the authors have utilized some repeated techniques to

create story worlds in the system, and this section describes these

techniques and their utility in this story generation model.

4.4.1 Top- down story design
The author goal based story model in Wide Ruled encourages a

top-down specification of the story during its creation. Because

author goals are intended to be high level, self-contained story

intentions, they can be created and used before they are fully

fleshed out with completed plot fragments. This methodology is

familiar to those with a software programming background and

especially those with experience in object-oriented design, in

which the structure of a computer program can be defined, and is

often encouraged to be defined, before its function is ever fully

implemented. In the context of Wide Ruled, this involves the

creation of author goals and associated plot fragments containing

empty preconditions and only subgoal actions. This allows the

author to flesh out the high level, or author-goal level structure of

a story, before determining how these goals will be accomplished.

As the author moves from the highest to the lowest levels in the

story hierarchy, he or she must begin to consider the specifics of

the story, because these subgoals, by definition, become more

specific to the context in which they reside. As a story is fleshed

out with preconditions and story actions that print text, calculate,

and modify characters, environments, and plot points, these

subgoals can stay in place and provide the supporting story

skeleton for the creation of the details of a rich dynamic narrative.

4.4.2 Looping
A common construct within Wide Ruled stories is a repeated

author goal. Because there is no explicit way to execute a story

action multiple times, this story generation model requires

recursion to perform repetition. As seen in Figure 2, the murder

mystery implements looping using this method. The murder

mystery performs an “investigate clues” author goal multiple

times before continuing to solve the crime and finishing the story.

In order to prevent infinitely deep recursion, an author can specify

a plot fragment, which can be randomly selected, that stops this

repetition, or, as in the case of the murder mystery story, a plot

point can be used to store a counter, which is saved and

incremented by a calculations story action, and used to determine

when the looping action is complete. Note that repetition need not

be limited to occur within a single step down the story hierarchy,

as seen in the example story depicted in Figure 2. One can

imagine a loop in which many subgoals occur before a previously

used author goal is activated by a plot fragment.

4.4.3 Debugging
Because the creation of dynamic interactive narrative involves

generative constructs and often complex constraints, the creation

of a Wide Ruled story is not without its own potential problems.

When a story world is unruly and acting in unexpected ways, two

ways of debugging a story world have been found useful.

Inserting parameterized text throughout the story hierarchy that

prints out named variables is a tried and true method that finds its

roots in the “printf” software debugging methods of the

programming world. In addition, inserting an always-will-be-false

constraint into a plot fragment allows an author to temporarily

disable an entire region of potential story space. The Wide Ruled

tool itself provides a verbose output mode that prints the goal and

plot fragments that are being executed at any given time, which,

when combined with the previous two methods, has allowed

authors to track down most story world bugs with relative ease.

5. WIDE RULED 1
Wide Ruled 1, developed and evaluated in 2007, provided a

familiar graphical interface to the underlying UNIVERSE-style

story planner, utilizing standard interface conventions, including

OK/Cancel window actions, editable tables of attribute-value

pairs, clickable item lists, and hierarchical and collapsible tree

lists. In addition, the interface contained story-centric terminology

for each component of the interface, avoiding technical terms

where possible to avoid confusion for those without a technical

background. This became troublesome when attempting to

describe the binding and ordering of variables, passing of

parameters, and complex precondition constraints, which are

inherently technical in nature. A complete documentation of all

the features in Wide Ruled 1 is described in detail in our earlier

work [13].

Due to the complexity of creating precondition constraints, Wide

Ruled 1 provided a wizard-based interface to create these

potentially complex statements [13]. Similarly, wizards were used

to generate story actions, which often required referencing a

bound variable for modification or printing. These wizards proved

to be useful when learning how to create constraints, but

cumbersome and repetitive when creating many repeatedly.

In order to simplify complex precondition constraints and story

actions, these elements are displayed in the plot fragment editor as

natural-language statements. For example, consider this complex

constraint in a plot fragment precondition:

There exists a character, saved as “myChar”, where

trait “alive” = true, and relationship “enemy”

target name is saved as variable “enemyName”, and

trait “name” is saved as variable “charName”.

In this case, any character that is matched must have a value of

“true” for trait “alive”, the name of the character is bound to the

variable “charName”, and the name of the enemy of that character

is saved to the variable “enemyName”. In addition, a reference to

the matched character, “myChar” is also saved for later editing in

the plot fragment’s story actions. The following text is an example

of a story action, described in natural language that modifies the

“name” trait of the bound character “myChar”:

Edit Character “myChar”: set trait “name” to

“John”

These descriptions help users to quickly understand what a plot

fragment does without having to decode cryptic symbols.

As mentioned earlier, we implemented a story interactivity model

on top of the traditionally non-interactive UNIVERSE-style

generator used in this version. The reader could intervene in the

story planning process by selecting among possible plot fragments

for some author goals. Authors could select a single character as

the “active character” in each plot fragment, and a reader would

select a character when reading, and select amongst the possible

plot fragments available for that particular character, if any were

available. This method of interaction proved troublesome and

non-intuitive because it attempted to shoehorn the concept of an

“active character” for a decidedly non-character-centric story

planner [13].

Figure 3. The Wide Ruled 2 Main Window. Here, the

characters, environments, plot point types, and story hierarchy

are displayed to the author.

6. WIDE RULED 2
Wide Ruled 2 addresses many of the shortcomings of Wide Rule

1, which were made apparent with the feedback received from the

initial user evaluations in our previous work, as well as through

the continued use of the tool by its authors. It builds off of the

same graphical interface style of the original version with a series

of improvements described below, and is the publically available

version that is currently used in classroom settings and is actively

supported. Figure 3 shows the main screen of Wide Ruled 2.

The underlying story generation model of Wide Ruled was

modified in two ways for this latest version, in order to simplify

the generation model and provide a more intuitive authoring and

reading experience. The interactivity model of the previous

iteration proved to be unnatural, as described above. To address

this, Wide Ruled 2 implements an asynchronous goal execution

model, in which story authors specify a set of “Interactive

Actions” that a reader can execute at any time during story

generation. These actions are separate author goals, which can

modify the characters, environments, or plot points in the story

and output parameterized text to the screen. This change also

required that the story execution be slowed down so that a reader

could choose to activate these actions before the story was

completed.

Wide Ruled 2 also introduced an underlying story generator that

is driven by the ABL reactive planning architecture used in

interactive dramas like Façade [9]. This planner utilizes a similar

hierarchical decomposition as that of the UNIVERSE model, and,

due to its reactive nature, easily facilitated our new interactivity

model. This new reader-driven interactivity model also prompted

another change to the underlying story model. In Wide Ruled 1, if

an author goal had no executable plot fragment, the generation

loop would back-track its execution, erase any outputted text, and

choose another valid plot fragment in a previous author goal in

the execution stack. This model was not ideal for the online, read-

as-you-execute text output model of story generation that is

required of the new real-time interactivity model, and would result

in the removal of text that was already viewed by a reader. As a

result, backtracking was removed from Wide Ruled 2; if the story

generator encounters an author goal with no valid plot fragments,

story execution halts.

The wizard interfaces used in Wide Ruled 1 to create new

precondition constraints and story actions were removed in

version 2 in response to user feedback. The slow nature of the

step-by-step guidance through the creation process became

cumbersome once a user became proficient in plot fragment

editing. Wide Ruled 2 implements a more direct, list-based

interface that allows the user to edit all components of a constraint

simultaneously. The initial learning curve required to use this new

interface proved to be minimal and reduced authoring time for

most authors.

7. REAL-WORLD WIDE RULED
Since 2007, Wide Ruled 2 was used in three different classroom

settings by a total of 91 students with mixed non-technical (digital

arts, new media, literature) and technical (computer science, game

design) backgrounds. At the University of California, Santa Cruz,

we included Wide Ruled 2, like Wide Ruled 1, in two sections of

the Interactive Storytelling class hosted by the computer science

department. This class is cross-listed as an undergraduate and

graduate computer science and digital arts and new media

graduate class, allowing a varied (although a majority technical)

audience to learn the theory, techniques and technology behind

the creation of interactive stories. Students in this class were

required to complete an assignment using the Wide Ruled 2

program. In a previous assignment, students were instructed to

convert their favorite TV show, book series, or movie into a serial

narrative in the form of a story grammar. This story was then

suggested as the basis for their Wide Ruled stories. Each section

was given tool documentation, a full-class lecture describing the

tool and how to use it, full-time email support, and a full-class

“clinic”, in which students were able to receive in-person help and

support on their assignment. In addition, they were provided the

sample murder mystery story, and one of the sections was given a

tutorial to create a Little Red Riding Hood story world. The third

classroom setting for Wide Ruled 2 occurred in the Interactive

Storytelling class at the National University of Singapore, in their

Communications and New Media program. This class, taught by

Alex Mitchell, provided a purely non-technical audience for our

system, in contrast to the mostly technical group of students at

UCSC, increasing the balance of the group with a total of 41 non-

technical users. Students in this class were also assigned to create

a story world, were lectured on the story generation model and

system, and given documentation, the sample story, and the Little

Red Riding Hood tutorial. In the following sections, we describe

both quantitative story data metrics as well as a qualitative

analysis of our experiences teaching people to create stories using

Wide Ruled.

7.1 Quantitative Analysis
In this section we describe story metrics resulting from the batch

analysis of student story worlds. Because each classroom usage

scenario was slightly different due to changes in assignment

requirements, evolving documentation, minor evolution of the

tool, and differences in teaching methodologies and styles

between universities, this analysis is not the result of a strictly

controlled series of studies, but a high level quantitative

perspective on the trends and features present in our sample of

student story worlds. It is meant to provide the reader a feeling for

the quality and content of the stories created with our system, and

provide support for the qualitative analysis and lessons learned

described later in this paper.

7.1.1 Story Complexity
In general, the overall complexity of story worlds students created

in Wide Ruled 2 is slightly lower than expected, but demonstrates

usage of all of the key generative features of the story model. With

regards to story world objects, students tended to have an average

of 7.88 characters, 3.94 environments, 3.12 plot point types, and

9.52 author goals, with a total of 18.34 plot fragments per story

world. In general, bigger story worlds, with more available

characters, environments, plot fragments and plot points, result in

stories with more variation (plot fragment and textual variation as

different objects and characters as matched in preconditions

during generation) and/or larger overall length (more information

to utilize in the story). These numbers are on par or are larger than

the provided story world, demonstrating initiative by students to

create story worlds more complex than the ones provided to them.

Unfortunately, relationship attributes, in general tended to be less

common, with almost none appearing in environment objects

(0.18 on average per story), and only an average of 1.3

relationship attributes associated with the characters in each story

world. Traits for characters and environments were much more

common, with 6.2 and 2.2 character and environment traits on

average per story world, respectively. The low occurrence of

relationships between characters and environments relative to the

murder mystery sample story, suggests that there might be better

ways to manage this type of information, as discussed in the next

section. A small number of relationships in a story world typically

indicates that the resulting narrative relies on very little inter-

character or inter-environmental dynamics, or that many of the

interactions are statically written into the story text. In the former

case, the generated stories will have limited complexity, and in the

latter, lower variability.

Story hierarchy size metrics demonstrate varying success. For

each author goal, there were, on average, more than four plot

fragments that implemented that goal, however for each goal there

were only an average of 1.02 subgoals per author goal, which is

lower than the sample story, implying that subgoal actions were

not often used within plot fragments and the depth of the story

hierarchy is lower than what is ideal for complex story variation.

However, students tended to use 1.6 precondition constraints and

2.34 actions per plot fragment, with an average of 1.7 variable

bindings and 2.78 total variable references per plot fragment, both

of which are similar and greater than the provided sample story.

This implies that plot fragments were not only using multiple

constraints, but these constraints properly bound variables and

these variables were used in story actions, which is an essential

feature of Wide Ruled that captures much of its generative power.

An ideal story hierarchy is broad as well as deep, as mentioned in

section 4.3, encompassing multiple ways to accomplish each

author goal (breadth), and complex plot fragments that have large

amounts of deep hierarchical substructure (depth). The stories

created by the students had an average explicit story hierarchy

depth of 2.18 goals (this does not including recursive repetition,

which can deepen an active story tree), and an average of 3.4

author goals in height at the deepest point. These numbers match

or exceed that of the sample story, and show that students are

decomposing their story structure to an acceptable extent. The

number of precondition constraints and variable bindings and

references within a plot fragment should scale with the size of the

story world, as more plot fragments interact with more characters,

environments, and plot points, and in turn print out text

containing larger amounts of dynamic story information. If the

constraint count is much higher than variable usage on the whole,

then one can infer that the plot fragments, in general, are not

utilizing information, but only limiting the likelihood of a plot

fragment executing. The resulting story will likely contain lower

variations between generated stories. On the other hand, if the

precondition constraint count is dwarfed by number of variable

bindings and references in a plot fragment, then the resulting story

will likely contain textual variation, but a high amount of

repetition of story information within a single plot fragment.

Story actions consisted primarily of subgoaling, plot point editing,

and character editing, By far, subgoaling was the most common

story action within plot fragments, happening on average 0.5

times per plot fragment, while story object editing on characters

and plot points occurred at a rate of 0.11 and 0.35 edits per plot

fragment respectively, revealing that student story structures were

character- and plot point- centric, which is confirmed by earlier

observations which we comment on in a later section. It is

encouraging that subgoal actions were commonly used among

students, since subgoaling is a primary component of the

UNIVERSE model, and is a primary way to encode story

variation. Students also tended to create but not delete plot points,

with creation occurring 0.27 times per plot fragment, and deletion

happening a much lower 0.005 times per plot fragment, on

average. It is clear that environments are a highly unused feature,

and were involved in an average of only 0.008 actions per plot

fragment, which we comment on in a later section. The lack of

plot point deletion is expected, since they are typically used to

keep track of plot progression information, and therefore are

created constantly referenced throughout the story. In addition,

due to the smaller size of story worlds created in these classroom

settings, users typically never needed to manage a large number of

plot points of the same type simultaneously as a story was

generated, therefore reducing the need to delete these story

objects during generation.

Between technical and non-technical authors (technical authors

have more programming background as determined from an

author survey), technical authors have more complex story worlds

across the board, with a notably larger number of subgoals per

plot point (40% more), and 34% more plot point edit actions per

plot fragment. In addition, non-technical authors tend to reference

variables less per plot fragment (-29%), especially within

precondition constraints (-93%) A majority of the rest of our

measures of story complexity were also higher for technical

authors, but to a lesser extent. These deficiencies seem to imply

that non-technical authors tend to utilize fewer of the generative

features of Wide Ruled, especially the dynamic named variable

binding components. This highlights the need to make the story

model more accessible, which is discussed in a later section.

Notably, technical authors tended to use the calculation story

action 79% more than non-technical authors, author goal

parameters 92% more, precondition negation (“There does not

exist …”) 59% more, and variable references 29% more. All of

these Wide Ruled features are aspects of our story generation

model that most closely resemble software programming

constructs. It is not surprising that incrementing values (which

made up the majority of calculations), passing parameters, and

referencing variables are common operations for authors with a

programming background. Finally, non-technical authors had

story worlds that were 60% more similar to the sample murder

mystery story world provided to students. This similarity value

was calculated as a distance between feature vectors of these and

other quantitative story world metrics. This implies that non-

technical authors may be more hesitant to experiment with this

story generation model, and prefer to stick to closely to the sample

story when possible. Our future work section discusses ways to

make the story model more accessible to non-technical users.

7.1.2 Text Variation
Because Wide Ruled 2 is a text-based generator, analysis of the

only method of output, printed parameterized text, should provide

insight into the success of the tool as a powerful dynamic story

generator. In total, text output actions made up 1.05 actions per

plot fragment and were, on average, 294 characters long, with 2

parameterized text blocks per text output action. The

parameterized text tended to be single words, and most often

nouns, specifically names of people, places, and things. We

believe that this amount and kind of dynamic text is a reasonable

level of variation, and is close to that of the provided sample

story, but we would have liked to see experimentation with more

richly parameterized text fragments.

Interestingly, non-technical authors created, on average, text

output actions with 478 characters, 179% larger than the technical

authors tended to do. There was a smaller (8%) increase in the

average number of text output actions for the non-technical

audience, but the number of parameters within these text blocks

were slightly lower (-5%). This corresponds with lower (-29%)

counts of variable references throughout the plot fragments as a

whole, suggesting that these authors, while proficient with static

narrative creation, are utilizing less the dynamic textual features

of the system.

7.2 Qualitative Analysis
The quantitative metrics of the student story worlds does not tell

the entire story about the various strengths and weaknesses of

Wide Ruled as a story authoring tool. In this section we will cover

unusual story structure failures, common complaints, unused

features, and general problem areas we and our colleagues

encountered as we taught and supported students using Wide

Ruled. While this list of deficiencies is daunting, rest assured that

the majority of the students that used the tool successfully created

unique generative and interactive narratives. We have learned the

most from the failures and complaints encountered along the way,

and therefore focus on them as a motivation for future work.

7.2.1 Outlier Stories
With our experiences in the classroom, there are some interesting

story worlds that highlight some of the potential conceptual

troubles encountered with this story generation framework.

Orphan story hierarchy subtrees. A very common issue students

encountered was portions of the story hierarchy that are either

never subgoaled, or are blocked by a set of preconditions on a plot

fragment that can never be true. This is usually caused by the

process of editing a plot fragment, temporarily deleting a subgoal,

and never remembering to reattach that subgoal and its subtree of

the hierarchy back to the main story hierarchy. This could be

solved by providing a useful visualization of the story world,

which is addressed in our future work. A precondition blocking a

portion of the story space is usually a misunderstanding a complex

set of interacting precondition constraints, which is an inherent

difficulty in managing these generative constructs.

Plot point driven story. In one story world, a student used plot

points as a way to manually drive the progression of the story

generator. Instead of arranging the story world as a large hierarchy

of goals and letting the story generator execute naturally, he or she

had created only a single author goal with many plot fragments.

The plot fragments would check for the existence of a certain plot

point type, and if it existed, print text and create a new, different

plot point type, and subgoal to the same parent author goal,

creating a loop which would then trigger a different plot fragment.

The result was a story world with many plot point types that

replaced the built in sequential ordering in the generator. This was

likely a misunderstanding of the purpose of plot points as a way to

store important plot information, rather than as a way to drive the

progression of the plot.

Static story worlds. In a few student stories, very few or no

characters, environments, or plot points were used during story

generation within plot fragments (even if they were present in the

story file). Most or all of the content of the story was embedded

completely in the author goal and plot fragment hierarchy, and

stored in almost completely static text. The result was a story

world that was nearly functionally identical to a story grammar.

The conceptual problems here likely came from difficulties in

converting the previously created story grammar assignment to a

Wide Ruled story.

Mostly sequential story spaces. Another common issue was story

worlds that were mostly sequential. There are two ways that this

occurred: either through a very broad tree with many sequential

story actions, or a very deep tree with a chained series of

subgoals. Both of these situations are depicted in Figure 4. The

narrative in these story worlds was mostly linear, with little

variation between each story instance, and the text output actions

were often primarily static. This kind of problem appears to be the

result of difficulty decomposing a story into a hierarchical

arrangement. Students would revert to a mostly linear story and

attempt to still use the subgoaling or sequential story action

features of the generator.

Figure 4. Example problematic story worlds. The top and

bottom image depict primarily depth (through subgoaling) and

breadth (through sequential story actions) in a story space,

respectively, but both result in low variation between story

instances. Ideal story worlds exhibit similar breadth and depth

for maximum story variation.

7.2.2 Programmers and Writers
As Wide Ruled was being used by both technical and non-

technical students, it became clear that the combination of a story-

focused system with generative formalisms could cause usability

problems with students of either background. Some technical

users of Wide Ruled would ask whether a specific feature of a

programming language existed within the system, or how that

feature could be replicated. The majority of these requests were

the result of authors with extensive programming backgrounds

struggling with the hierarchical, non-deterministic execution

model of Wide Ruled, and attempting to employ traditional

programming language constructs in an ad hoc way. For example,

some students would create a large Boolean “OR” construct by

creating two identical plot fragments with a single constraint

differing between the two. Another student created a blank plot

fragment in order to provide a way to skip over an author goal.

While all of these solutions are valid (and sometimes clever) ways

of constructing a Wide Ruled story, they were usually part of a

tedious process of attempting to shoehorn a traditional,

deterministic program structure into the inherently non-

deterministic plan-like story generation model. The result was

often a very complex story structure that did not necessarily

produce an interesting generative narrative. In the personal

experience of one the authors, in a workshop in which Wide

Ruled was used with a mixture of undergraduate and graduate

students, all with technical backgrounds, the graduate students

seemed to have more trouble creating a new story in the system

than the undergraduates at the same seminar. These older, more

experienced students didn’t appear to “get it” (the story model),

because they were so used to traditional programming techniques

that the author goal model became a hindrance, while the

undergraduate students appeared to be more accepting of the new

system and to more easily adapt to it. In contrast, non-technical

authors using Wide Ruled often struggled with errors typically

encountered by those learning to program, such as unreachable

code (plot fragments), endless loops (infinite subgoal recursion),

and incorrect or misspelled variable references. It is clear that

both of these user backgrounds can result in a problematic

learning or unlearning curve for either type of user.

The source of these issues is likely an incorrect balance of

computational and literary constructs exposed and taught to the

students. There are components of Wide Ruled that still remain

inherently very programmatic and therefore complex and

unfamiliar to a non-technical author even when they are designed

to be as story-centric as possible (described in the next section).

At the same time, these technical features closely resemble many

traditional programming constructs that can obscure the narrative

purpose of these features to someone who has encountered them

in other technical contexts. The documentation and in-class

lecture describing Wide Ruled focused primarily on the individual

features of the model, and the underlying technical capabilities of

the system. Even with a provided tutorial and example story

world, we believe that some of the trouble that students have with

Wide Ruled stems from a lack of proper conceptual

decomposition of the system in the context of story creation.

7.2.3 Problem Areas
In addition to the specific story worlds described in section 7.2.1,

students using Wide Ruled had troubles with some of the specific

features of the tool. In the final section of this paper we discuss

some possible solutions to these troubles, as well as for the

failures discussed in previous sections.

Constraint programming and variable binding. Complex Boolean

constraints, chained precondition variable bindings, and variable

reference management are not intuitive concepts. These constructs

are considerably harder to grasp for those without a technical

background, and pose a large hurdle between the current state of

the system, and the ultimate vision of it as a practical tool for non-

technical, arts and writing focused students.

Interactivity. The interactivity model present in Wide Ruled 2 was

not fully complete for its initial classroom usage, and as a result,

only two classes were given an example of it in use, and were able

to effectively employ the feature in any meaningful manner.

Specifically, the NUS class was required to implement at least two

interactive actions, and the second UCSC section was given the

option to receive extra credit for implementing an interactive

action. While the general feedback from both these classes

showed interest in the feature, and a much more positive response

than the previous interactivity model, the open-ended nature of it

made practical usage difficult. Currently, interactive actions can

be activated at any time during story generation. According to

student feedback, designing an interactive story action that can be

activated any time during generation, and still result in an

interesting variation in the story, is generally hard to design for

and unintuitive. Multiple students suggested that tying interactive

actions to more limited and localized plot fragment or author goal

specific contexts would be much more useful for storytelling.

8. CONCLUSIONS AND FUTURE WORK
This work has shown that Wide Ruled is a usable and practical

system for technical and non-technical users to harness the power

of a plan-based story generation model. It has been used multiple

times by students with varying backgrounds to successfully create

generative, interactive stories, and it exists as a unique system –

the only public implementation of a UNIVERSE-like model of

story generation, and one of a very few set of stable, supported,

and openly available interactive plan-based story generation tools.

Even with these successes, it is clear that there is much work to be

done to develop Wide Ruled into a tool that is truly friendly to

writers, game designers, and other non-technical authors.

Assistive, visual, intelligent interfaces. While authors, in our

experience, are indeed creating dynamic and interactive story

worlds with Wide Ruled, the story structure complexity, story

world size, and textual variation in these stories falls behind the

work of those with a technical background. The main areas of

improvement to be made exist in the realm of assisting users in

performing, and sometimes automating, complex tasks that are

common for technical authors, but totally foreign to those with

training in traditional literary methods. Particularly, we must

focus on aiding users in the generation and understanding of the

potentially complex constraints that may exist within plot

fragment preconditions in complex story worlds. These logical

constructs are a key part of the Wide Ruled story model, and

every author wishing to harness the generative power of the

system must use them liberally. In addition, the creation and

visualization of relationships and the constraints on these

relationships within preconditions could eliminate much of

confusion surrounding these unused features, especially since

compelling dramatic narrative can often make use of character

relationships that break and reform. Adding visual management

and navigation of environment relationships would also likely

encourage their use in stories. Finally, the management of variable

naming, binding and referencing within and amidst preconditions

and story actions should be made as intuitive as possible. This

could be accomplished with a visual graph-like tool for managing

references, removing the explicit naming of variables unless

absolutely necessary.

Evaluating creative and expressive benefits. In future studies, an

additional, more complete evaluation of Wide Ruled and its

successors in the context of enhanced creativity and

expressiveness would be useful in determining the tangible gains

of the system over traditional authoring techniques. While no

existing UNIVERSE-based authoring tools exist, a comparison to

a paper-based, reader-selected branching narrative model, such as

is demonstrated in the popular “Choose Your Own Adventure”

series of books, might lend some insight into the expressive power

of the UNIVERSE model and our interface to it. Specifically, by

evaluating the authoring process with this traditional “analog”

interactive storytelling method alongside the more complex

computer-based Wide Ruled system, perhaps we could determine

if authors were empowered by our interface and its underlying

model, or in fact hindered by its complexity.

Better story-centric feature decomposition and presentation.

Although automation and/or assistance in the interface can

provide help to non-technical users, there is much potential

benefit in developing a more writer/story focused method of

presenting the features of the system, with smaller examples that

cover narrative constructs and their interpretation in the Wide

Ruled story model. As mentioned in section 7.2.2, students of all

backgrounds had occasional trouble in understanding the

capabilities of Wide Ruled in the context of a story. Writers were

confused by the technical details of the model, while programmers

failed to understand how a familiar computational construct was

useful for storytelling. While the tutorial and provided example

story world demonstrated complete stories, our system did not

provide decomposed “story functions”, or isolated examples of

individual computational features utilized in a narrative context,

to connect the technical theory with practical storytelling

techniques. To address this weakness, our system itself could

provide auto-generated, templated story components, such as a

repeating event loop, or a simple rising and falling conflict model,

that demonstrate from directly within the system computational

constructs suitable for generative narratives. This would provide a

straightforward way to guide an author without requiring them to

reverse engineer a sample story world. A change of presentation

could also help alleviate the problems that technical users tend to

have with trying to fit Wide Ruled into a traditional programming

language model. If our system can be demonstrated consistently as

fundamentally a generative narrative environment, instead of a set

of technical features and an execution model that happens to be

able to generate stories, then both writers and programmers alike

will benefit from this new perspective.

The future of this work lies in all of the above improvements,

combined with a vastly more scalable, visual and intelligent

programming environment based on storyboard presentation of

storytelling. The structural and iconic language of sequential art,

of which storyboards and comics are two instances, has been

sufficiently analyzed to provide knowledge and heuristics for

computational storyboard generation [2, 10]. Sequential art can

communicate a large amount of emotional and situational

information in a small space, by making careful use of drawing

style, coloring, shading, panel ordering and arrangement, and

panel composition. The Wide Ruled story model, with its

sequential story actions and easily visualized hierarchical story

structure, lends itself well to this representation. Furthermore, by

replacing traditional lists and scroll bars with visual graphs and

other spatial representations of the complex preconditions and

variable binding interactions that occur in our story model, Wide

Ruled and its successor will handle larger and more complex story

worlds (much larger than those created in our classroom

evaluations), and thus much more deeply varying and longer

generated stories. It is our hope, that by combining the visual

metaphors of the storyboard with the Wide Ruled story generation

model, we can evolve our story generation system into an

authoring tool that fully addresses the weaknesses of Wide Ruled

and moves that much closer to the vision of a truly writer-and

designer-friendly system for the creation of rich, compelling,

dynamic, and interactive narrative.

9. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation under Grant No. IIS-0747522. Any opinions, findings

and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect those of

the National Science Foundation.

10. REFERENCES
[1] Barrenho, F., Romao, T., Martins, T., Correia, N. 2006.

InAuthoring environment: Interfaces for creating spatial

stories and gaming activities. In Proceedings of the 2006

ACM SIGCHI international conference on advances in

computer entertainment technology.

[2] Bernstein, M. 2002. Storyspace 1. In Proceedings of the

Thirteenth ACM Conference on Hypertext and Hypermedia

(College Park, Maryland, USA, June 11 - 15, 2002). J.

Blustein, Ed. HYPERTEXT '02. ACM, New York, NY, 172-

181.

[3] Cash, S. Patrick. 2007. Bowyer: A Planning Tool for

Bridging the gap between Declarative and Procedural

Domains. (Master’s Thesis). Technical Report. etd-

10212007-210447, North Carolina State University.

[4] Donikian, S., Portugal, J. 2004. Writing Interactive Fiction

Scenarii with DraMachina. In Proceedings of TIDSE.

[5] Eisner, W. 1985. Comics and Sequential Art. Tamarac, FL:

Poorhouse Press.

[6] Gebhard, P., Kipp, M., Klesen, M., Rist, T. 2003. Authoring

Scenes for Adaptive, Interactive Performances. In

Proceedings of AAMAS-03, pp. 725-732.

[7] Lebowitz, M. 1985. Story Telling as Planning and Learning.

Poetics 14, pp. 483-502.

[8] Lebowitz, M. 1984. Creating Characters in a Story-Telling

Universe. Poetics 13, pp. 171-194.

[9] Mateas, M. and Stern, A. 2002. A behavior language for

story-based believable agents. IEEE Intelligent Systems,

July/August 2002, 17 (4), pp. 39-47

[10] McCloud, S. 1993. Understanding Comics. New York, NY:

Kitchen Sink Press/Harper Perennial.

[11] Sauer, S., Osswald, K., Wielemans, X., Stifter, M. 2006. U-

Create: Creative Authoring Tools for Edutainment

Applications. In Proceedings of TIDSE 2005, pp. 163-168.

[12] Silverman, B., Johns, M., Weaver, R., Mosley, J. 2003.

Authoring Edutainment Stories for Online Players (AESOP):

A Generator for Pedagogically Oriented Interactive Dramas.

In Lectures Notes in Computer Science: Virtual Storytelling.

Springer

[13] Skorupski, J., Jayapalan, L, Marquez, S., and Mateas, M.

2007. Wide Ruled: A Friendly Interface to Author-Goal

Based Story Generation. In Proceedings of ICVS.

[14] Thomas, J., Young, M.R. 2006. Author in the Loop: Using

Mixed-Initiative Planning to Improve Interactive Narrative.

In the ICAPS 2006 Workshop on AI Planning for Computer

Games and Synthetic Characters.

[15] Zagalo, N., Göbel, S., Torres, A., Malkewitz, R. 2006.

INSCAPE: Emotion Expression and Experience in an

Authoring Environment. In Proceedings of TIDSE.

