
The Design of Mismanor: Creating a Playable Quest-Based
Story Game

Anne Sullivan, April Grow, Michael Mateas, Noah Wardrip-Fruin

Expressive Intelligence Studio

University of California, Santa Cruz

{anne, agrow, michaelm, nwf} @ soe.ucsc.edu

ABSTRACT

Computer role-playing games (CRPGs) have strong narratives,

but in general lack interesting and meaningful choices for the

player within the story. As a result, the stories are not playable. In

this paper we present an existence proof for a new approach to

CRPG stories that addresses this, while providing details of our

implementation. We designed and created a new playable

experience, Mismanor, to test our theories of playable stories. We

discuss the design decisions made as well as the details of the

CiF-RPG and GrailGM systems used for complex quest

generation and story management based on player’s traits and the

social state of the game world.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Applications and Expert Systems –

games.

K.8.0 [Personal Computing]: General – games.

General Terms

Design, Experimentation, Theory.

Keywords

Role-playing games, quests, story management.

1. INTRODUCTION
Computer role-playing games (CRPGs) often provide a rich game

world with well-crafted stories for the player to experience. The

world is enhanced by giving the player complex and robust

combat systems, allowing for interesting and meaningful choices

through player-crafted strategies. Players are often given the

option to personalize their character, adding further interest and

complexity to the player’s combat options. As an example, in a

fantasy-based CRPG, a player can choose to play a rogue with

high stealth which gives the player different combat options than

if they chose a mage with a strong spell-casting ability.

However, this personalization and strategic gameplay does not

extend to the stories, which are meant to give meaning to player

actions. Narrative is often linear; the player moves through the

experience, fulfilling checkpoints to advance the story. The player

may be given choices along the way during pre-determined

branch points within the narrative; however these choices

generally have localized impact, with the overall story arc

remaining the same. Character personalization, likewise, has little

effect on the story other than perhaps a few word replacements

within the dialogue.

CRPGs typically use quests to tie player’s actions to the storyline,

to give meaning to their actions. While this can provide coherence

and believability, it can also lead to the player feeling forced to

follow a pre-determined set of actions which may not correspond

to their desires for their player character. Unfortunately, because

story progression is linked to quest progression in a fixed manner,

the player may be left choosing between their desired player

character stories or progressing through the game.

Table-top role-playing games, the predecessor to CRPGs, use

human game masters (GMs) to sidestep this issue. Story flexibility

is provided by the GM adapting and responding to the player’s

choices, creating new stories and quests as the game progresses,

weaving the player’s desired story into the overarching game

story. This provides the player with interesting and meaningful

choices for personalization within the story itself, providing a

playable story [19].

In part, we are interested in working towards the same type of

flexibility in CRPGs, using AI systems to adapt the story through

quests based on the player’s actions and personalization; to create

playable quest-based stories. To address these issues and test the

viability of our approach, we have begun creating a playable

experience entitled Mismanor, a non-combat CRPG with a focus

on emergent character interactions and dynamic quest selection.

The available actions within the social space are dependent on the

player character’s traits, a player’s past actions, and the current

social state. Similarly, quests are chosen based on a game

character’s current motivations and feelings towards the player,

with quests having multiple goal states with different

consequences to give players control over the story.

In previous papers we have focused on high-level design [18],

character creation, representation and social interactions [17]. In

this paper we address the design considerations in creating

Mismanor along with details for the AI systems CiF-RPG and

GrailGM that were required to create playable story through quest

structures.

2. RELATED WORK
Other games have been created with similar goals as those we had

when creating Mismanor. In addition, there is a substantial

amount of research related to interactive storytelling. In particular,

we are focusing on research relating to narrative generation and

quest generation.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FDG '12, May 29-June 1, 2012 Raleigh, NC, USA.

Copyright (c) 2012 ACM 978-1-4503-1333-9/12/05... $10.00.

2.1 Related Games
Prom Week [12] and Façade [11] are games that explore the space

of social interactions. Prom Week gives the player the ability to

choose characters and have them interact with each other, while

Façade is an open-ended dramatic scene between the player

character and two game-controlled characters. While we are also

interested in exploring the space of complex social interactions,

we are interested in how a player character — personalized based

on the user’s preferences — can influence and interact with an

integrated social simulation within a quest-based RPG.

Pataphysic Institute (PI) [7] is a multiplayer role-playing game

that deeply connects a player’s character with the game world.

The player’s traits and abilities are based on their personality and

state of mind — tracked by the Mind Module [8]. A player can

create new enemies to defeat based on their actions within the

game. Similarly, we also have an interest in deeply tying the

player’s character and choices to the story and available actions.

However, in Mismanor we are focused on non-combat

interactions, and on a narrative built through the quest structure.

2.2 Narrative Generation
There are several related research paths in Narrative Generation.

One path is the research conducted on autonomous agents, such as

the work of Pizzi, et al. [15]. This work implements NPCs as

autonomous agents, such that they react to the player in an

interesting and believable manner. The narrative evolves based on

the character’s interaction with these agents, but there is no

guarantee of coherence throughout the story.

Drama Management (DM) systems guide the user towards a more

coherent story by adapting the options available to the player

based on the player’s actions. Both the beat-based DM in Façade

[11] and the PaSSAGE system [21] employ a content-selection

model of drama management. In Façade, the beat-based DM

maintains a probabilistic agenda of dramatic beats. Each beat

coordinates autonomous characters in carrying out a bit of

dramatic action while supporting player interaction during the

beat. Similarly, PaSSAGE contains a library of character

encounters in a role-playing game, dynamically selecting the next

encounter as a function of a model of the player. Thue, et al. [20]

expand this work into a delayed authoring system which aims to

infer player state to offer a more player-specific experience.

GrailGM, the AI system within Mismanor which maintains story

coherence, combines these two approaches by offering both semi-

autonomous agents and a system of offering options to the player

based on their previous actions within the game, but guided by

authorial intent. GrailGM is also not necessarily constrained to

one model of story “goodness.” Façade uses Aristotelian

dramatic rules to create a story that follows appropriate tension,

while PaSSAGE and delayed authoring create user models to

predict player preference. In GrailGM, the goals of the system are

defined by the designer and can follow the rules used by either of

these systems, or entirely different rules depending on the author.

Finally, Peinado and Gervás [14] began work on an interactive

storytelling system that models a game master (GM) and player

models based on the heuristics set forth by Robin Laws [10]. The

system described was never completed to our knowledge, and as

such, players were restricted to one of seven pre-made characters

which had pre-created player models associated with them. In

Mismanor, the heuristics used for choosing quests and quest

solutions are not built into the system, but are instead specified by

the designer.

2.3 Quest Generation
There are currently only a handful of systems working with quest

generation. Charbitat [1], a game system consisting of generated

terrain tiles with randomly placed components based on player

actions, was expanded to include lock-and-key style quests based

on spatial progression through the world. As the level was

generated, a quest could be created on a new tile which used the

world state as context for the goal of the quest. Unlike Mismanor,

quests within Charbitat are generated without author input, but

are based instead on the tiles the system is generating.

ScriptEase [13] is a designer tool created to work with the

NeverWinter Nights [4] Aurora toolset [2]. ScriptEase follows a

pattern-based approach to authoring, with many of the common

designing tasks available as a pre-scripted selectable component

in the tool. Many of the standard quests regularly found in CRPGs

are available as a pattern in the quest library. These patterns are

extensible so that a designer is not restricted to just the quests

available in the library. Once created, these quests are playable

within a NeverWinter Nights module. Unlike Mismanor, the

quests are statically placed and do not change based on the

player’s actions.

Grey and Bryson [9] suggest an agent-based approach to quest

design, with agents able to observe, remember events, and

communicate those events with other agents. These events are

used to justify quests requested of the player to add believability

to the agents. In Mismanor, we are interested in agent

believability, but we take a more story-centric approach to focus

on story coherence.

Figure 1. Screenshot of Mismanor. The player has initiated the

Gossip social action, which Violet has rejected. The system

status messages are shown in the black bar above the

dialogue. Status messages are used to detail why an action has

been accepted or rejected and why game characters choose

specific actions.

3. DESIGN OF MISMANOR
The game Mismanor (see Figure 1) is a historical fantasy, set at a

manor in the countryside. There are six characters the player may

interact with including the Colonel who became estranged from

his family while he was at war, his beloved daughter, Violet, who

was scarred by the loss of her mother at an early age, and the

stable-boy, James, who has been caught up in the family drama

from his desire to stay close to Violet. As the player character

interacts with the family, it is gradually revealed that some of the

game characters are member of a cult, and the player character

was invited to the dinner party for not entirely innocent reasons.

Interaction between the player character and game characters

takes place through dialogue exchanges.

3.1 CiF-RPG
Because we are interested in providing an experience of game

complexity focused on character relationships instead of fighting

mechanics, we chose to use the Comme il Faut (CiF) system [12]

to leverage the first-class models of multi-character social

interactions. From this system, we created CiF-RPG [17] which

supports a player character and treats items and knowledge as

first-class objects similar to characters. Where CiF typically

models two character social interactions, CiF-RPG models more

complex multi-character and object interactions, such as character

A asking character B to help them acquire knowledge K from

character C.

CiF-RPG includes first-class models of multi-object social

interactions — modeling relationships, traits, statuses, social

history (in the social facts database, or SFDB), and culture, along

with a library of social interactions or moves. The rules about how

these models affect social interactions are represented as micro-

theories. The micro-theories represent social knowledge outside

of the context of specific social moves, supporting their reuse. The

micro-theories are used to modify the saliency of each social

action — adding a positive or negative weight to whether a

character is likely to want to engage in a specific social action.

For our purposes, one of the most important aspects of CiF-RPG

is the object representation. Each object within CiF-RPG is

described by a set of traits and statuses. Traits are static

descriptors such as sentimental, unforgiving, or secret. Statuses

are transitory, representing temporary states such as AngryAt,

empty, or false. Traits and statuses, like the other models within

CiF, have micro-theories associated with them. For instance, a

character that is unforgiving and heartbroken will be less likely to

initiate a positive social action like “Compliment” with the

character that caused the heartbreak.

Unlike typical CRPGs in which every character has the same set

of descriptors (e.g., strength and dexterity) with differing levels,

CiF-RPG gives us the ability to create character descriptions that

capture the complexities of personality — and have the

character’s traits deeply tied to the actions available to the player.

Because objects and knowledge are represented as top-level game

objects, as mentioned above, they also support traits and statuses

with associated micro-theories and social actions. When CiF-RPG

reasons about social actions, it considers all possible objects in a

specific role. We created role types such that the system could

reason about characters, knowledge, and items in these roles. For

example, in the social action Discuss Secret, the system considers

all combinations of character A wanting to discuss knowledge S

with character B. A and B are constrained to character roles (items

and knowledge cannot talk) while S is constrained to knowledge

with the trait secret. For each combination, rules from appropriate

micro-theories determine a final score for how much A wants to

discuss S with B.

Because physical items are treated as fundamentally the same as

other game objects, we created special case social actions that the

player can use with items. These actions rely on the traits and

statuses of objects to describe the possible interactions the player

may take. For instance, an object with the trait drinkable and the

status full allows the player to drink the object. If the object also

has the trait alcoholic, upon drinking, the player will gain the

status tipsy. This gives the designers the ability to quickly make

objects and describe them with traits and statuses without having

to create actions to interact with each object. While the micro-

theory rules for physical object interactions will generally be

simpler than that for social interactions, the full power of CiF-

RPG is available to support making physical object interactions as

context and history dependent as desired.

Another key component of our design is CiF-RPG’s model of

relationships. CiF-RPG maintains multiple dynamic relationship

spectrums between characters which are bi-directional, but not

necessarily reciprocal; that is, while Violet and James both have a

value representing their level of friendship with one another,

James may have stronger feelings of friendship for Violet than

vice versa. Since inter-personal feelings are multi-dimensional,

CiF-RPG supports a number of different relationships such as

friendship, trust, and romance. Again, these are associated with

micro-theories; for instance, a character with a high romance level

with another character has a positive weighting to ask that

character out.

3.2 Quest and Story Design
The choice to use CiF-RPG guided the design of the game in a

number of ways. Because we removed combat from the game, and

focused on social interactions as the core mechanic, it was

necessary to change the design and focus of our quests. In a

traditional CRPG, quest types are focused on combat, movement,

and environment manipulation [16]. For our purposes, quests are

focused around changing the social state of the world — that is,

increasing or decreasing relationship values, or adding or

removing statuses. This gives us new quest types, and also forced

us to re-evaluate the quest structure. Because human relationships

are often more complex than killing, movement, and item

manipulation, we felt that it was important for the system to notice

how a player chooses to complete a quest. For instance, the player

may be tasked with breaking up Violet and James, but they may

choose to try wooing one of the characters as part of breaking

them up. We felt this should lead to a different outcome, as the

quest giver was likely to care about that detail. We therefore

changed our quest design to accommodate multiple quest

completion states.

Similarly, because the player is changing the social state of the

world, it felt overly static for the quest giver to always give the

same quest in the same way, regardless of their feelings towards

the player. Because we already allowed multiple endings, we

allowed each of the endings to be a possible desired goal state. In

the previous example, if the Colonel likes the player character

enough, he may be interested in having the player character woo

his daughter Violet, away from James.

Unlike killing, movement, and item manipulation — in which the

character has simply either done it or not — having complex

relationships allowed us to also include more complex completion

states, including states that are the opposite of what the quest

giver originally intended. While the player may have been asked

to break up the ill-begotten lovers, the player can instead choose

to strengthen their relationship to the point in which they decide to

elope. This leads to a very different quest ending and

consequences. Because this is not a state that the quest giver is

likely ever going to desire, it is not included in one of the possible

quest introductions.

Because so much of the interaction in the game is delivered

through dialogue, it made sense for our major story elements to

also be delivered this way. Given the more open-ended nature of

our quests, and the ability of the player to change the social state

of the world, it didn’t make sense for the storyline to be linear; if

the player character had gotten close to Violet, they should see a

different story than if they got close to the Colonel.

To accommodate this, we broke the story into plot points

(discussed in more detail in section 4.3) and categorized the plot

points into story lines about each character, as well as the central

plot line about the cult. We also identified eight different endings

based on how the different characters felt about the player. While

the player may see parts of each plot line, they will see only one

complete character plot line in a given play through; the cult plot

line is central to the overall story, so is always seen. Which

character plot line the player sees is dictated by their standing

with the various characters.

3.3 Example
To help illustrate the capabilities of our system, we will look

further at the quest in which the Colonel (Douglas) has learned

about the relationship between his daughter, Violet, and the stable

boy, James. He strongly disapproves of the relationship and asks

the player character to break them up. The pre-conditions for

receiving this quest are that the Colonel knows about the hidden

relationship, the relationship is still active, and that the Colonel

has a high level of trust with the player character. The default

completion state is that the relationship is no longer active.

The player has a number of options to accomplish this task

depending on the situation and the player character’s traits. If

Violet or James trusts the player character enough, and the player

character has the manipulative trait, one action available that can

be chosen is to talk badly about the character’s partner, lowering

trust or romance to a point where a breakup will happen. If the

player character has the confidence or promiscuous trait, the

player may be able to improve the romance levels with that

character to the point where the character will leave their partner

for the player character. It is also possible to share a damaging

secret about one of the lovers, or raise Violet’s feelings for the

Colonel to the point where she can be convinced to break up. If

the player character successfully flirts with James, Violet (who

has a high jealousy trait) will become angry at James (and the

player character) which can be taken advantage of by the player to

cause a break up.

Additionally, there are other possible completion states for this

quest. One ending is to improve the relationship between the

Colonel and the stable boy, James, such that the Colonel no longer

disapproves of the relationship. Another ending is that the player

can choose to strengthen the relationship between James and

Violet to the point that they elope. This removes them from the

game, which leads to a different game ending, as Violet is one of

the key players in the cult.

All of these things could, theoretically, be accomplished through

traditional technical approaches to quest implementations.

However, creating quests with a large number of possible

completion paths and goal states is rarely done in commercial

RPG development, even by teams that are initially interested in

such approaches. Standard implementation approaches such as

quest flags and branching if-then trees used in CRPGs such as

Planescape: Torment [6] and Dragon Age: Origins [3] allow for

some dynamic behavior, but create a rigid and exponentially

growing structure as the quest flexibility grows. We have

developed an approach for supporting such quests at a deep

technical level, rather than requiring extensive ad-hoc work by

designers on a foundation developed for more linear, single-

solution quests.

4. PLAYABLE QUEST PROGRESSION
Given the design choices that were made and discussed in the

previous section, it was necessary to modify our game mechanics

and AI systems from our original design. In particular, GrailGM

was modified to handle the dynamic nature of the quest and story

structure within our game.

Figure 2. The game loop in Mismanor. The player character

and game characters take turns interacting, and the

interactions are stored as history in the social facts database

(SFDB).

4.1 Player Actions
With the design of Mismanor focused so heavily on social

interactions, it was important for us to have a system that could

richly simulate the social landscape of our game.

A key aspect of the gameplay within Mismanor is that the player

needs to actively strategize—molding their character and the

social situation—to manipulate what actions are available.

As seen in Figure 2, the player interacts with the game by

choosing a character to interact with and then choosing a social

action they would like to initiate with that character. Which social

action is available to the player is based on the player’s character

traits and statuses, as well as the current social state of the world.

The saliency of the move is calculated based on micro-theories

and influence rules which describe how the character’s traits and

statuses affect their willingness to take a specific action. As

discussed above, micro-theories are used as generalized

knowledge of how specific traits, statuses and relationships

weight different actions based on their intent. The intent is used to

describe the desired outcome of a social action by the character

initiating that action.

For instance, working with our previous example of attempting to

break up Violet and James, the micro-theory about the

promiscuous trait gives a positive weighting to all social moves

with the intent to increase romance. In addition, each social action

has special case influence rules which describe how that particular

action is modified by various traits, statuses, relationships and

history. So while the promiscuous trait micro-theory gives a

general positive weighting to social moves which increase

romance, the trait would have a negative weighting towards the

social move Indirect Conversational Flirt as a promiscuous

character would be less likely to do something so subtle.

These factors are all used to calculate a weighting that represents

the interest that the player character would have in initiating that

action. The player is presented with the top three to five positively

weighted actions to choose from.

The character that the player is interacting with can then choose to

accept or reject the intent of the action. After the character accepts

or rejects the initiated social action, the effects of the action are

resolved. Every action changes the social state, either by changing

a relationship or adding or removing a status. The effect, or

outcome, of a social action is chosen based on the traits, statuses,

and relationships between the two characters, as well as any

history between them.

Every action is also stored in a history of actions, called the Social

Facts Database (SFDB). Some actions are also tagged with

author-specified information such as “romantic action” or “mean

action.” These can be referenced in future actions to both weight

which actions are available or chosen, as well as which effect (the

dialogue instantiation and social state change consequences) is

played out.

4.2 GrailGM Quest Management
To support our desire for playable quests, we have continued

working on the GrailGM system, a run-time game master which

uses the current social state and the player’s character to

dynamically select quests and story plot points. GrailGM supports

quests with multiple goal states, allowing the player to choose

which direction they wish to take the quest. By choosing quests

based on player action, and giving the player a choice in

completion state, the player is able to shape the story as they go,

having a discernable impact on the narrative.

4.2.1 Quest Types
One of the ways in which we reason about quests is based on the

quest type. As mentioned above, the types of quests in CRPGs can

be described by the actions required of the player. For instance,

delivery quests require movement and item manipulation actions,

and kill quests require combat actions. Because CiF-RPG supports

many player actions (particularly social actions) not typically

found in RPGs, it was necessary to create new types of quests.

We chose to base the quest types on the intent, or motivation, the

NPC would have for giving the quest — similar to the

categorization of social actions. The intent of the quest correlates

with the change in the world state if the quest is completed

according to the default completion state. The new quest types

are: Relationship Up/Relationship Down (e.g. improve Friendship

or decrease Romance), Status Gain/Status Lose (e.g. gain Dating,

lose AngryAt), and Knowledge Gain/Knowledge Share (e.g. learn

the cult exists, share secret relationship).

4.2.2 Quest Structure
To support the amount of dynamic content we envisioned, it was

necessary to create a flexible quest structure. In modern CRPGs, it

is common to use flags to track quest completion and story state.

The use of flags is considered simple, but it requires designers to

carefully think through all the possibilities of the situation.

Additionally, as the number of options grows, it becomes more

difficult to track different game states, and there is more room for

designer error. For instance, as discussed by Wardrip-Fruin [22],

even in the award-winning RPG Star Wars: Knights of the Old

Republic [5], it is possible to complete quests and meet characters

in orders not foreseen by the designer, which can lead to

inappropriate story moments or quests becoming impossible to

complete.

Due to the brittle nature of quest flags and our desire for playable

quests, we chose to instead use predicate logic to represent intent,

pre-requisites, and goal states within our quest structure as seen in

Figure 3. This allows the designer to describe the desired states

without needing to track the various ways to get to that state.

Using our predicate system, we can label each quest with a set of

intents, which represent the motivation for an NPC to give that

particular quest. For instance, the quest to break up James and

Violet has the intent to remove the dating status between Violet

and James. Each quest is associated with one or more intents. This

allows GrailGM to reason about the quests based on NPC

motivation, which works well with the capabilities of the CiF-

RPG framework.

Because quests are chosen dynamically, it is also possible for

some quests to be given by different NPCs. Therefore, each quest

can also be associated with a set of pre-conditions for which

NPCs can give the quest, as well as the pre-conditions for world

state for the quest to be available. For our example, only the

Colonel would give the quest to break up Violet and James, so the

quest giver preconditions were left out of the diagram for space.

This system allows for author flexibility such that they may later

drop in a new NPC without having to tie the NPC explicitly to

every quest that is possible for them to give. For instance, if we

assign a new NPC a romantic trait and give them a high amount of

romance towards another character, they would match the pre-

requisites for a quest requesting the player to deliver an item to

the character they felt romantic towards.

Finally, each quest is given a set of completion states. Each

completion state has a set of scenes associated with it (described

below) and the description of the social state that matches that

completion state. Quests are not required to have multiple

completion states, but the addition of them gives the player more

flexibility and control over the story.

4.2.3 Scenes
To support this flexibility, each quest has an arbitrary number of

scenes associated with it. Scenes are used to describe both quest

introductions and quest completions. A scene is comprised of a

dialogue exchange between a specified character and the player,

as well as a change to the social state of the world. Each scene is

associated with a state which describes the necessary game state

required to receive that scene.

Upon receiving a quest, the appropriate scene is chosen based on

the most complex state that has been matched. Each quest has a

default starting scene which has no state pre-requisites. It is

important to note that these pre-requisites are in addition to any

general quest pre-requisites, so while a quest is not necessarily

always available to the player, a starting state must always be

available if that particular quest is chosen. An author may then

specify other potential starting states. For instance, as discussed

Figure 3. The quest structure for the example quest to break

up Violet and James.

above, the player may receive a quest from the Colonel asking the

player to break up Violet and James (the default scene). However,

if the Colonel really likes the player, they may receive a scene in

which the Colonel asks the player to woo Violet away from

James. Depending on which scene is selected, the player will see a

different dialogue exchange; however all starting scenes lead the

player to receive the OnAQuest status.

Upon quest completion, the completion scene is chosen based on

the most specific state that has been matched. Using the previous

quest as an example, there are five possible completion scenes

associated with the following states: Violet and James no longer

have the dating status, the player and Violet have the dating status

and Violet and James do not, the player and James have the dating

status and Violet and James do not, Violet and James have the

eloped status, and finally the Colonel thinks highly enough of

James that he becomes okay with the relationship.

Figure 4. Example completion state with associated scenes.

Instantiations are full dialogue exchanges, but they are

shortened here for space. A scene is described by an

instantiation and effect pair. Here they are broken out for

readability purposes.

Completion scenes have multiple dialogue exchanges and effects

— one set for each possible starting scene. If the Colonel asked

the player to break up Violet and James as the starting scene, but

the player returns having wooed Violet, the Colonel is obviously

going to have something different to say than if the player had

only broken them up — and the consequences should also be

different (instantiation and effect pair #1 in Figure 4).

While this may initially seem similar to a flag-based approach, it

differs in a couple of key ways. The first is that quest completion

is based on a specified state; we do not need to maintain and set

flags for each possible combination of events which could lead to

the desired state. This allows the designer to easily modify the

desired states without worrying about coded flags. Additionally,

we use default instantiations for desired completion and undesired

completion. This allows the author to create new start and

completion scenes without needing to author more dialogue, but

specific dialogue is supported.

This system allows the player latitude in how they choose to

fulfill a quest, as well as give the system the ability to have that

choice affect the game world and the story.

Finally, the effects of a scene are also stored in the Social Facts

Database (SFDB) which, as described earlier, is used to reference

social history. Future social actions and outcomes of actions can

be modified or reference the outcomes of the quests.

4.2.4 Dynamic Quest Selection
In Mismanor, a player may only be on one quest at a time. This

design decision was made as the intent for our game is for a

shorter, more focused experience. It also allows the player to

focus on the story they are creating without being sidetracked by

too many quest objectives.

To implement quest giving in Mismanor, we made the act of

giving a quest a social action supported by CiF-RPG. We created

a social action for giving each subtype of quest, with the intent of

the action matched to the quest type’s intent, and added these to

the CiF-RPG library. For instance, Give Romance Up Quest is a

social action, as is Give Lose Dating Quest.

This allows us to leverage the micro-theories and influence rules

we use for other social actions to choose the most salient quest

type. The system uses CiF-RPG to reason about the NPC intent

and GrailGM to reason about the particular quest to give within

that subtype.

When a give quest social action is chosen as the NPC’s top

choice, CiF-RPG sends a request to the GrailGM system to ask for

a quest of the appropriate type. Currently, GrailGM checks

preconditions and returns a quest of that type. If no quest is

available, CiF-RPG chooses the next highest weighted social

action for the NPC to enact. We are currently incorporating

author-specified story heuristics to give GrailGM additional

control over shaping the player experience. For example, a quest

involving a powerful item would have a higher weighting during

the end game than at the beginning of the game, and a quest

following up a piece of knowledge recently received (e.g. in the

last 2 actions) would have a high context rating.

4.3 GrailGM Story Management
We are interested in not only giving the player moment-to-

moment interaction with the story through dynamic quests, but

also allowing the player’s actions to have an effect on the global

story line as well. To accomplish this, we needed to add a form of

story management to GrailGM.

In our system, Knowledge is a first-class object within the system,

and plays a large part in tracking both the main story and general

information about the game world and its characters.

4.3.1 Plot Points and Knowledge
In Mismanor it is necessary to make a distinction between general

world knowledge and story knowledge. General world knowledge

refers to pieces of information that the player (and other

characters) can learn that add some depth and interest to the

world. These range from likes and dislikes of the characters to

opinions about different locations. The key distinction is that these

pieces of knowledge are not necessary to progress the main story

in the game. General world knowledge can be used in knowledge-

based social moves such as Discuss Information and Tell Secret.

Plot points are represented as story knowledge. This is a specific

type of world knowledge that the game treats slightly differently.

Because we are interested in being able to dynamically shape the

story using author-level heuristics, the major story elements are

not (for example) placed in fixed locations in physical space or

simply triggered by the player accomplishing in-game objectives.

Instead, possible plot points are chosen by GrailGM (discussed

more in section 4.3.3) and plot points are revealed during other

social moves as dialogue mix-ins. In this way the player has some

indirect control over the plot-points (which social actions they

choose) but the possibilities are chosen by the AI system.

Figure 5. A portion of our story DAG, showing the plot points

associated with the cult storyline, as well as some of the

possible endings.

4.3.2 Plot Point Structure
Plot points are specialized forms of knowledge with the addition

of pre-conditions and a set of possible instantiations.

Each plot point has a trait specifying that it is a plot point, along

with a trait that describes which storyline it belongs to. Our story

is broken up into seven storylines; one storyline per non-player

character, and one storyline describing the cult. In any

playthrough, the player will only see the one full character-based

storyline determined by their relationships with the characters.

Plot point preconditions are story-based prerequisites on when a

plot point is available. These are represented by the story DAG

(partially represented in Figure 5), and are hard-constrained

ordering requirements on the story designated by the author at

design time. Because we want to enable dynamic choices, it was

important that we didn’t over-constrain the story space. This was

done partially by breaking the story up into the four storylines

mentioned above, and also by allowing sets of plot points to be

revealed in an unspecified order. For instance, in our story, there

are five cult-based plot points that can be learned in any order

before unlocking the plot point revealing the cult. Purely optional

knowledge was moved out of our story knowledge and

represented as game knowledge.

Additionally, plot points have associated instantiations, which are

dialogue exchanges that are inserted into social moves based on

who the player is talking to and the context of the surrounding

dialogue. These mix-in instantiations are based on the character

speaking, as well as the mood of the conversation that we are

trying to match. For instance, if the player is talking to Violet, and

they are having an angry exchange, the plot point mix-in would be

different than if the player was having a pleasant exchange with

James.

Figure 6 shows that it is possible for the player to learn that Violet

is a cult member through various means from Violet, but only

during an angry exchange with James. The Colonel does not know

about the cult, so it is not possible to learn about it through him.

Figure 6. A sample plot point. The instantiations are full

dialogue exchanges, they have been shortened here for space.

We do not require the authors to create each combination of game

character and mood; if there is no matching plot point mix-in for

the current interaction context, we silently move past the mix-in

point and leave the plot-point available for a future social

interaction.

4.3.3 Dynamic Plot Point Selection
GrailGM uses a tiered constraint system to choose which plot

points are available for the player to uncover. At any given time,

up to three plot points are available for the player. This number

was chosen based on the number of plot points a player would see

in one playthrough and the number of quests the average player

would complete in one game session.

Plot points are only available to uncover while the player is on a

quest. This design decision was made to keep the quest and story

system tightly coupled, and the game is designed such that the

player is almost always on a quest. Back story general world

knowledge is available at any time, so the player can still learn

about the world regardless of their questing status.

GrailGM then chooses quests based on three tiers of constraints.

The first tier looks at the hard constraints, which are the story-

level pre-conditions for plot points. These are designated by the

story DAG, as described in section 4.3.1. If more than one plot

point is available, each plot point is weighted based on author-

level preferences. These preferences are stored as a set of

heuristics which measure story cohesion, storyline mixing, and

storyline concentration.

Story cohesion looks at the graph structure for the story DAG. If

there are multiple branches that are available to traverse, story

cohesion prefers the branch with the most discovered nodes. This

leads to the player uncovering plot points that are highly related to

previous plot points.

Storyline mixing and storyline concentration are related, but

describe opposite effects. Near the beginning of the game, the

authors prefer the player to have a broad mixture of the different

storylines. This allows players to choose which character they

would like to learn more about, without forcing their hand too

early. In contrast, storyline concentration prefers deep storyline.

As the game progresses this plays a stronger part, and the player

will end up revealing plot points about one particular character.

Finally, plot points and quests are tagged at design time with any

associated characters or locations. For instance, the plot point

“Violet has a scar on her wrist” is tagged with the character

Violet. GrailGM uses the author-level weighted plot points,

choosing from the top three based on which plot point has the

most shared tags with the active quest. For instance, if the player

is currently on the quest to break up James and Violet, a plot point

about James or Violet would be chosen over one about the

Colonel.

5. CONCLUSIONS AND FUTURE WORK
We have presented the Mismanor role-playing game, which

employs the CiF-RPG and GrailGM systems to create playable

quest and story structures. We discussed the design implications

of our desired goal as well as the systems we chose to incorporate.

We use the CiF-RPG system for rich social simulations and

dynamic social interactions between the player and in-game

characters. We use GrailGM for dynamically choosing quests and

plot points based on the player’s past actions and the current

social state of the game world.

By constructing GrailGM, CiF-RPG, and Mismanor, we have

created an existence proof for a new approach to story in role-

playing games — one with power and flexibility that addresses

known problems in the game genre and allows it to move toward

experiences that have proven impractical with today’s technical

and design approaches.

We see a couple of interesting extensions to this work. Our goal is

to create RPG story experiences with the playability and

complexity currently found within combat systems. Combat

provides the player with strong feedback in how they are

progressing: hit-points track progress and death is used to mark

when the player has reached an unbeatable state. However, using

a social model, it is not immediately clear how to communicate

progress to the player.

We have begun pilot studies which have shown that there is still

work to be done this area. In combat, actions are clearly labeled as

to the intent of the action (buff, debuff, heal, harm) and the

current status of a character is easily shown as a hit point bar. We

are planning to borrow from this system, labeling each action with

the intent of the action, and showing the current state of

relationships and statuses for each character within the GUI.

Additionally, we feel that it is important to create visualization

tools for the author, given this is a new method of authoring

quests and stories. We are interested in creating a visualization in

which the author can easily see a story graph which will help to

identify orphaned or overly gated plot points. Similarly, a tool that

is able to map the possible paths to various completion states

given a game state along with a quest would make it possible to

check the emergence of the quest as well as check that it is able to

be completed.

6. ACKNOWLEDGMENTS
We would like to extend our thanks to Joseph Allington, Tabitha

Chirrick, Shawn Hampton, Kevin Meggs, Lauren Scott, Max

Stokols, and Vanessa Valencia for their hard work and dedication

to this project. This material is based upon work partially

supported by the National Science Foundation under Grant No.

IIS-0747522.

7. REFERENCES
1 Ashmore, Calvin and Nitsche, Michael. The Quest in a Generated

World. In Situated Play: International Conference of the Digital
Games Research Association (Tokyo, Japan 2007).

2 BIOWARE. Aurora Toolset. 2002. ships with NeverWinter Nights.

3 BIOWARE EDMONTON. Dragon Age: Origions. PC, Electronic

Arts. 2009.

4 BIOWARE. NeverWinter Nights. 2002.

5 BIOWARE. Star Wars: Knights of the Old Republic. PC, Lucas Arts.

2003.

6 BLACK ISLE STUDIOS. Planescape: Torment. PC, Interplay
Entertainment. 1999.

7 Eladhari, Mirjam Palasaari and Mateas, Michael. Rules for Role-Play

in Virtual Game Worlds - Case Study: The Pataphysic Institute. In
Proceedings of Digital Arts and Culture (Irvine 2009).

8 Eladhari, Mirjam Palosaari and Sellers, Michael. Good Moods:

Outlook, Affect and Mood in Dynemotion and the Mind Module. In

Proceedings of the 2008 Conference on Future Play: Research, Play,
Share (New York 2008), ACM.

9 Grey, John and Bryson, Joanna. Procedural Quests: A Focus for Agent

Interaction in Role-Playing Gaes. In Proceedings of the International

Conference on Interactive Storytelling (Edinburgh 2010).

10 Laws, Robin D. Robin's Laws of Good Game Mastering. Steve Jackson
Games, 2002.

11 Mateas, Michael and Stern, Andrew. Façade: An Experiment in

Building a Fully-Realized Interactive Drama. In Game Developers

Conference, Game Design Track (San Jose, CA 2003).

12 McCoy, Josh, Treanor, Mike, Samuel, Ben, Tearse, Brandon, Mateas,
Michael, and Wardrip-Fruin, Noah. Authoring Game-based Interactive

Narrative Using Social Games and Comme il Faut. In Proceedings of

the 4th International Conference & Festival of the Electronic
Literature Orginization: Archive & Innovate (Providence 2010).

13 McNaughton, Matthew, Cutimisu, Maria, Szafron, Duane, Schaeffer,

Jonathan, Redford, James, and Parker, Dominique. ScriptEase:

Generative Design Patterns for Computer Role-Playing Games. In
International Conference on Automated Software Engineering (Linz,

Austria 2004).

14 Peinado, Federico and Gervás, Pablo. Transferring Game Mastering

Laws to Interactive Digital Storytelling. In International Conference
on Technologies for Interactive Digital Storytelling and Entertainment

(Darmstadt, Germany 2004).

15 Pizzi, David, Cavazza, Marc, and Lugrin, Jean-Luc. Extending

character-based storytelling with awareness and feelings. In
Proceedings for International Conference on Autonomous Agens and

Multiagent Systems (Honolulu 2007).

16 Sullivan, Anne. Gender-Inclusive Quest Design in Massively

Multiplayer Online Role-Playing Games. In Proceedings of the 4th
International Conference on Foundations of Digital Games (Orlando

2009).

17 Sullivan, Anne, Grow, April, Chirrick, Tabitha, Stokols, Max,

Wardrip-Fruin, Noah, and Mateas, Michael. Extending CRPGs as an
Interactive Storytelling Form. In Proceedings for the International

Conference on Interactive Digital Storytelling (Vancouver 2011).

18 Sullivan, Anne, Wardrip-Fruin, Noah, and Mateas, Michael.

QuestBrowser: Making Quests Playable with Computer-Assisted
Design. In Proceedings for Digital Arts and Culture (Irvine 2009).

19 Sullivan, Anne, Wardrip-Fruin, Noah, and Mateas, Michael. Rules of

Engagement: Moving Beyond Combat-Based Quests. In Proceedings

of Foundations of Digital Games (Monterey 2010).

20 Thue, David, Bulitko, Vadim, and Spetch, Marcia. Making Stories
Player-Specific: Delayed Authoring in Interactive Storytelling. In Joint

International Conference on Interactive Digital Storytelling (Erfurt,
Germany 2008).

21 Thue, David, Bulitko, Vadim, Spetch, Marcia, and Wasylishen, Eric.

Interactive Storytelling: A Player Modelling Approach. In Artificial

Intelligence and Interactive Digital Entertainment (Palo Alto, CA
2007).

22 Wardrip-Fruin, Noah. Expressive Processing: Digital Fictions,

Computer Games, and Software Studies. MIT Press, Cambridge, 2009.

