
Rhythm-Based Level Generation for 2D Platformers
Gillian Smith, Mike Treanor, Jim Whitehead, Michael Mateas

Expressive Intelligence Studio
University of California, Santa Cruz

Santa Cruz, CA, USA

{gsmith, mtreanor, ejw, michaelm}@soe.ucsc.edu

ABSTRACT
We present a rhythm-based method for the automatic generation
of levels for 2D platformers, where the rhythm is that which the
player feels with his hands while playing. Levels are created using
a grammar-based method: first generating rhythms, then
generating geometry based on those rhythms. Generation is
constrained by a set of style parameters tweakable by a human
designer. The approach also minimizes the amount of content that
must be manually authored, instead relying on geometry
components that are included in the level designer’s tileset and a
set of jump types. Our results show that this method produces an
impressive variety of levels, all of which are fully playable.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games. I.2.4 [Artificial
Intelligence]: Knowledge Representation Formalism and
Methods – Representations (procedural and rule-based).

General Terms
Design, Human Factors.

Keywords
Games, levels, procedural generation, 2D platformers.

1. INTRODUCTION
Despite hundreds of successful games with interesting levels, the
science behind level design is still imperfectly understood. As a
result, existing methods for procedural level generation tend
towards either terrain generation or fitting together large, hand-
authored chunks of a level using heuristics to determine their
ordering. While these methods can produce pleasing results, they
can also lead to repetitive levels with a high authorial burden.
This is especially true for 2D platformers, where the entirety of
the player’s experience is heavily influenced by the layout of
levels.

The main elements of 2D platformers are well known: platforms,
enemies, collectibles, and hidden areas. However, the ways in
which these elements can be combined to make an interesting
level is highly variable. Surprisingly little has been written on

how to create these levels; our recent work [14] provides a first
step towards defining a vocabulary and analytical framework for
examining these levels.

We believe a key underlying idea behind 2D platformer level
design is the notion of rhythm, and the timing and repetition of
distinct user actions [4][7]. Players strive to navigate complicated
playfields full of obstacles and collectible items; manually
designed levels frequently contain a series of challenging jumps
that must be timed perfectly. This paper presents a realization of
this theory of level design in the form of an algorithm for
automated level generation. An example of the kinds of levels it
can produce is shown in Figure 1. In order to capture the
importance of rhythm, the level generator is designed with a two-
tier, grammar-based approach, where the first tier is a rhythm
generator, and the second tier creates geometry based on that
rhythm. The separation of tiers ensures that the intended rhythm is
always present, regardless of geometric representation.

This work addresses several questions:

1. Is rhythm-based level generation a feasible approach?

2. Is the rhythm-based method for generating levels a
significant improvement over existing approaches?

3. How can human control be exerted over the generated
levels?

This work is similar to that of Nelson & Mateas in that its goal is
not entirely to replace a human designer but rather to further
understanding of deeper issues in level design and provide an
“intelligent … design tool to support human … designers.” [6]
The deeper issue of level design for platformers that is explored in
this paper is the rhythm the player experiences during the course
of a level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICFDG’09, April 26–30, 2009, Orlando, FL, USA.
Copyright 2009 ACM 978-1-60558-437-9…$5.00.

Figure 1. Part of one of the many 2D platformer levels that
can be created by the rhythm-based level generator.

Although the level generator itself is fully automated, it can take
input from a human designer to restrict the kinds of levels that it
will produce. The designer is provided a set of style “knobs”;
these knobs dictate a general path through the level, the kinds of
rhythms that can be generated, the types and frequencies of
geometry components, and how collectible items (coins) are
interspersed throughout the level. Adjusting these style parameters
can drastically alter the generated levels.

This paper presents the details of the rhythm-based generator, and
examples of the kinds of levels it can produce. The primary
contribution of this work is its use of a two-layer grammar-based
geometry generation system using rhythms that are made up of
verbs, and the use of these verbs as a driver for geometry
generation. The level generator can be guided by a human
designer who tweaks the style of levels. The paper also presents a
set of algorithms that operate on the level as a whole, including
critics that determine how good a level is according to style
parameters, and a method for decorating a level with coins.

2. RELATED WORK
Ever since Rogue [16] became popular in the mid-1980s there has
been interest in automated or procedural level generation. Even as
recently as 2007, Hellgate: London [5] uses some of the same
techniques to generate its levels. Rogue-like level generation
operates on the principle of encoding level design knowledge into
an algorithm that randomly generates levels. Dwarf Fortress [1]
makes perhaps the most extensive use of procedural generation;
everything in the game is automatically generated, including
terrain, underground spaces, and even a world history.

Within the genre of 2D platformers, Markus Persson’s Infinite
Mario Bros! [11] generates levels by probabilistically choosing a
few idiomatic pieces of platformer levels and fitting them
together. While this technique produces levels that, on the surface
at least, look and feel a great deal like Mario, over time it becomes
apparent that there is very little variety between levels due to the
repetition of idioms. Our work attempts to solve this problem by
using a much finer granularity for geometry—the pieces that we
fit together are much the same as those that would be found in a
level designer’s tileset. The designer need only classify those
pieces by a set of rules for when they should show up. One
consequence is a lower authoring burden as compared to existing
level generation techniques, while producing a larger variety of
levels.

Spelunky is another 2D platformer with procedurally generated
levels [18]. This game uses Rogue-like level generation
techniques to fill rooms with passages, treasure, and enemies.
Spelunky belongs to a sub-genre of 2D platformers that is not
well-suited to our approach of rhythm based level generation, as
the challenges in the game are not dexterity-based, but rather
exploration-based. Examples of the dexterity-based platformers
that we target are Super Mario World [9] or Sonic the Hedgehog
[12].

Other work that specifically addresses procedural level generation
for 2D platformers is that of Compton & Mateas [3]. They also
split up levels into smaller sections and generate those sections
from individual platform tilesets; they call their sections
“patterns” where we call ours “rhythm groups”. Our work is quite
different, though, in that our two-tiered approach to rhythm group

generation, by explicitly separating rhythm generation and
geometry generation, means we can represent more variety in
levels than their pattern-building approach, in which rhythm is
implicitly determined from geometry decisions. The use of style
parameters also provides authorial control over our generated
levels, missing in Compton & Mateas’s work.

Recent work on procedural level generation in other game genres
includes Togelius et al. [15], who take a difficulty-based approach
for evolving levels for racing games. Their heuristics are based on
creating more “fun” levels for players, whereas our critics operate
given the designer’s goals for the level.

Charbitat is an exploration into procedurally generated levels built
by Michael Nietsche et al. [10]. Their work focuses on an
evolving world that is based entirely on player actions; the
components Charbitat uses to create a potentially infinite world
are procedurally generated terrain tiles with randomly placed
components within them. Although different from our work in
terms of both genre and approach, a common idea is shared: a
“procedurally determined context is necessary to structure and
make sense of this [procedurally generated] content” [2]. While
their context comes in the form of automatically generated quests,
ours comes in the form of a rhythm for the geometry to follow and
the style parameters we make available to a human designer.

Although not in the realm of content generation for games, other
grammar-based approaches are related. The Instant Architecture
[17] project uses grammars for both architecture generation and
ensuring the correct distribution of attributes. Tableau Machine
[13], an art generator, uses a grammar for generating art, and their
method for solving the problem of under-constrained results by
generate-and-test was the inspiration for our own implementation
of critics.

3. SYSTEM OVERVIEW
The rhythm-based approach for generating levels is described in
Figure 2. It begins with a two-layered grammar-based approach
for generating small chunks of a level, called rhythm groups [14].
The first stage creates a set of actions that the player will take,

Figure 2. Level generation algorithm. Green squares indicate
generated entities, while blue circles indicate constraints.
Style parameters influence many aspects of level generation.

constrained to form a rhythm. The second stage uses a grammar to
convert this set of actions into corresponding geometry according
to a set of physical constraints.

To form a complete level, rhythm groups are fit together side by
side, bridging them with a small platform that acts as a rest area
for the player. Many different levels are generated, forming a pool
of candidate levels which are then tested against a set of critics to
determine the best level. This level then is referred to as a “base
level”, which can be improved through decorating it with coins
and tying its platforms to a common ground point.

At all stages of level creation, style plays an important role. Style
is represented as a set of parameters that a human designer can
tweak. Parameters include the frequency of jumps per rhythm
group, and how often a spring should be generated for a jump.

4. RHYTHM GROUP GENERATION
Rhythm groups are small, non-overlapping sections of a level that
encapsulate a sense of rhythm for the player. For example, a
rhythm group could be three short hops with minimal movement
in between, or a repeated section of long runs with small jumps in
between. To capture this sense of rhythm, rhythm and geometry
are separated through a two-tiered generation system. All rhythm
groups built off of the same rhythm may have a different
geometric representation, but ultimately “feel” the same to the
player. Rhythms maintain a length, density, beat pattern, and the
ability to reflect or repeat that pattern. This section discusses the
generation of rhythms and how they drive geometry generation
through a set of physics constraints.

4.1 Rhythms
The rhythm generator chooses a set of verbs corresponding to
player actions; currently, the verbs it can choose from are “move”
and “jump”. It also chooses the times that these verbs should
begin and end. This produces rhythms such as the following:

 move 0 5
 jump 2 2.25
 jump 4 4.25
 move 6 10
 jump 6 6.5
 jump 8 8.5

In this example, the player starts moving at 0 seconds, and

continues moving until 5 seconds. While moving, the player
jumps once at the 2 second mark and again at the 4 second mark,
each jump lasting .25 seconds. The length associated with the
“jump” verb corresponds to the amount of time the player will
hold down the “jump” button. Since different hold times influence
the height of the avatar’s jump, it is important to keep these jump
types distinct. For example, the player may hold the button down
for only .25 seconds, resulting in a very short hop, or may hold it
down much longer for a long jump. The example rhythm above
has the player moving almost all the time, except for a 1 second
“wait” at time 5 due to the lack of a movement or jump command
occurring at that time.

To introduce variety, the beat type, length, and density of the
rhythms can be modified. The beat type refers to the way the start
times of actions are organized to create rhythm. The current
options are “regular”, the beats spaced evenly, “random”, the
beats placed at random intervals, and “swing”, the beats placed in
a swung beat as understood in music theory. The length can be 5,
10, 15, or 20 seconds, and the density can be “low”, “medium”, or
“high”. Density refers to the number of actions that should be
performed by the player during the rhythm group. Figure 3 shows
examples of the types of rhythms that can be generated.

4.2 Geometry
The geometry generator is responsible for taking rhythms from the
rhythm generator and creating a possible interpretation for them.
These interpretations can be wildly varied due to the number of
options for each verb and the way jumps must be handled due to
physics constraints.

Received verbs are first converted into a list of movement states
and a queue of jump commands. The movement states (“moving”
or “waiting”) have a length associated with them, and the jump
queue maintains the start time and length of each jump. For
example, the rhythm:

 move 0 4
 jump 2 2.25
 move 6 10
 jump 6 6.25
 jump 8 8.75

forms the following set of states and jump queue. Figure 4 shows
a graphical representation of this rhythm, with a solid line
denoting movement, a dashed line denoting waiting, and hatch
marks showing jumps.

States: [4, moving], [2, waiting], [4, moving]

Jumps: [2, short], [6, short], [8, long]

However, the jump length merely tells how long the player holds
the “jump” button; the actual time in the air varies based on which
jump type is chosen; a jump across a flat gap takes considerably
less time than a jump onto a spring. Therefore, jumps consume
some amount of the movement state list at the time the jump
occurs. For example, assuming there are only two jump options

Figure 3. Examples showing the effects of varying the
length, type, and density of a rhythm. Lines indicate the
length of the rhythm, and hatch marks indicate the times
at which an action will begin.

Figure 4. An example rhythm.

(flat gap and spring), and a jump across a flat gap takes 0.5
seconds and a jump onto a spring takes 1.5 seconds, processing
the first jump in our example could result in one of the two
configurations shown in Figure 5.

The states that the jump consumes are used to determine how
large the gap is, using the physics model; the rhythm of stopping
and starting motion is still felt by the player while in mid-air. Note
also that the type of jump that the geometry generator chooses at
any time must be constrained by the start time for the next jump,
ensuring that one jump finishes before the next jump begins. This
keeps complete control over rhythms in the hands of the rhythm
generator.

4.3 Geometry Grammar
The movement states that are not consumed by jumping and
queued jumps form the non-terminals in the geometry generation
grammar (Figure 7). The “waiting” state is meaningless on its
own, as there must be something to wait for. Generating geometry
for a wait state involves looking ahead in the state list.

Figure 6 shows an example of an initial rhythm (top of Figure 6)
and four different geometries that can be generated from it.
Figures 6(b) and 6(d) show how moving platforms consume a
wait-move-wait; other interpretations of two wait-moves in a row
are shown in Figures 6(a) and 6(c). The dotted lines show how the
first three jumps correspond to geometry; note that waits
introduce variation to the physical length of the rhythm group and
jumps that occur after waits no longer “line up” with the sample
rhythm. This figure also show many different interpretations for
each jump.

4.4 Physics Constraints
The physics model maintains information about the avatar’s
capabilities and the different types of jumps available. The model
includes the avatar’s size, maximum movement speed, initial

jumping velocity, and the height the avatar can jump given a
short, medium, or long jump button press. For jumps, the model
includes the in-air time for each jump type, as well as the relative
height difference for the two platforms on either side of a jump
and the velocity imparted by a spring. Available slopes for
platforms are also recorded. This model is ballistics based,
extended to allow variable jump heights; the longer the player
holds down the jump button, the longer the avatar will be in the
air. This style is common for Mario-style platformers. More
advanced player physics, such as double-jumping or wall-
jumping, are not supported.

The physics model is responsible for providing the rhythm
generator with information about the amount of time the avatar
will be in the air for a given jump hold time. Its primary use,
however, is to provide constraints for the geometry generator, thus
ensuring that all generated levels are playable.

5. CRITICS
Complete levels are generated by piecing together rhythm groups
and connecting them with a “rest area” platform. Rhythm groups
can optionally be repeated before this rest area, which can provide
additional challenge [7] and more visual consistency.

move 0.00 8.00

jump 2.00 2.25

jump 4.00 4.25

jump 6.00 6.50

move 10.00 12.00

move 14.00 20.00

jump 16.00 16.25

jump 18.00 18.25

Figure 6. Four possible geometry interpretations of the
provided rhythm. Small red boxes denote enemies to kill,
small green boxes denote springs, blue boxes are enemies to
avoid, large red boxes are stompers that follow the associated
line, and platforms on green lines are moving platforms. The
large green platform is the joiner from this rhythm group to
the next.

 Moving 2.0 seconds

 Jumping 0.5 seconds

 Moving 1.5 seconds

 Moving 2.0 seconds

 Jumping 1.5 seconds

 Moving 0.5 seconds

Figure 5. Two different types of jump can contribute to
different movement and jump state lengths. The blue area is
the amount of time consumed by the jump being in the air.

Unfortunately, a common problem with using design grammars is
over-generation; even with constraints on rhythms and the types
of jump, the level design space specified by the grammar is simply
too large and results in many levels that are undesirable. Attempts
to tighten the grammar to eliminate undesirable levels generally
results in eliminating some number of desirable levels. The basic
problem is that design grammars are good at capturing local
constraints, but some design constraints are global. This problem
is addressed by generating many levels and testing them against a
few different critics to determine which is best. Given a generated
level, a critic can perform tests over the entire level to determine
how well a given global constraint is met. Our level generator has
two critics: fitting to a designer-specified line, and ensuring the
correct distribution of level components according to the
designer’s style specification. The importance of each critic can
be adjusted to alter the kinds of levels produced.

5.1 Line Distance Critic
One input a human designer provides to the level generator is a
path that the level should follow, providing control over where the
level should start and end and the general direction it should
follow in between. This critic serves to rein in the large space of
levels that can be generated and allow the human designer to
assert additional control; existing, human-designed levels in Super
Mario World [9] and Sonic the Hedgehog [12] tend to follow
regular paths, rather than meander aimlessly through space. The
path is specified as a set of line segments which are not
necessarily connected end-to-end. In order to fit levels to this line,
the distance between platform endpoints and the line are
computed. Good levels are those with minimal overall distance.

5.2 Component Style Critic
There are many different parameters available for a human
designer to alter, affecting all stages of the generation process;
changing these parameters produces drastically different levels.
Rhythm style parameters provide control over rhythm length,
density, beat type, and beat pattern, as well as the frequency of a

beat being a jump or a wait. In the geometry stage, there are
parameters for the frequency of different jump types, and the
probability of sloped platforms. These parameters contribute
towards visual variation between levels, and are used in the
component frequency critic. The path that a level should follow
and the relative importance of following that path vs. having the
correct frequency of components are style parameters for the critic
stage. And finally, there is control for the numbers of coins in a
group, the amount of space between those coins, and the
probability for a coin to appear over a gap.

Style parameters are used in geometry generation as a weight for
how often each component should be chosen; however, these
weights only guarantee that over a large number of rhythm groups
the frequency of each component will asymptotically approach the
probability of it appearing. Each rhythm group is created by
pulling a relatively small number of geometric components from a
pool of generate-able components, and then levels are created by
choosing a small number of rhythm groups from a large number
of randomly generated rhythm groups. Therefore, there is no
guarantee that the observed frequency of components will match
the expected frequency, just as in a series of 10 coin flips there is
no guarantee that 5 will come up heads and 5 will come up tails.
The style critic is designed to ensure that the number of each type
of component in the level best matches the probability distribution
formed by the style parameters.

This critic works by applying the chi-square goodness-of-fit test
to each potential level, and choosing the level with the smallest
test statistic, representing the level that has the closest component
distribution to the desired style.

5.3 Combining Critics
There are many cases in which these two critics will contradict
each other as to which level is best. For example, a level that is
heavily weighted towards having springs will not fit a line that
slopes only downward. To resolve this contradiction, the level
with the lowest weighted average of the two critics is selected,
where the weight on each critic determines its importance.

6. GLOBAL PASSES
Although most of the level can be created with local generation
techniques, it is important to be able to reason over these levels.
The rhythm-based generator has two “global pass” algorithms:
tying platforms to a common ground plane, and decorating levels
with coins. These algorithms reason over both the player states
and the geometry associated with them. Tying platforms to the
ground provides some visual consistency for levels and removes
the possibility of the player unintentionally falling off platforms
that are spaced apart from each other.

Collectible items are treated as decoration over a level; this is
stylistically consistent with Mario and Sonic-style platformers.
However, games that treat collectible items as a primary goal,
such as Donkey Kong Country [8], would perhaps be better
served by placing coins during geometry generation.

Two rules determine collectible item placement:

1. Place a group of coins on a long platform of predetermined
length that has no action other than move associated with it.

Moving � Sloped | flat_platform

Sloped � Steep | Gradual

Steep � steep_slope_up | steep_slope_down

Gradual � gradual_slope_up | gradual_slope_down

Jumping � flat_gap

 | (gap | no_gap) (jump_up | Down | spring | fall)

 | enemy_kill

 | enemy_avoid

Down � jump_down_short | jump_down_medium | jump_down_long

Waiting-Moving � stomper

Waiting-Moving-Waiting -> moving_platform_vert

 | moving_platform_horiz

Figure 7. Geometry generation grammar. Player states
derived from the generated rhythms are non-terminals in
this grammar.

2. Reward the risk of jumping over a gap, and provide guidance
for the ideal height of a jump, by placing one at the peak of
jumps that go over gaps.

It would also be easy to specify new, powerful rules for coin
placement, such as along the path of a spring or fall to guide the
player in the right direction, due to the separation of rhythm and
geometry.

7. CREATING PLAYABLE LEVELS
In order to make the generated levels playable, they are translated
from the generator's internal representation of a level to the
Torque Game Builder's level format. Torque Game Builder is a
2D game engine that is widely used for independent and
commercial games. Because most platformers use tiles for visuals,
the translation process requires reasoning about tiles and their
size. This would otherwise not be a concern of the generator as it
uses simple shapes to represent its geometry. The generator
ensures that all platform dimensions are a multiple of a specified
tile size. Then when translating to Torque, a tilemap is created
that accounts for drawing the correct tile for the geometry. A
section of one of our levels is shown in Figure 8.

8. EVALUATION
This section evaluates the usefulness of each component in the
level generator, using a process of hypothetically removing each
component, then evaluating the impact that removal has on the
generated levels.

8.1 Rhythm Generation
We claim that generating rhythms is important for platformer level
generation as it introduces structure and context for the levels.
Purely randomly placed platforms are not sufficient for an
interesting level, and remove the important concept of rhythm-
based challenge from the game. Figure 9 shows an early attempt at
generating rhythm groups by randomly placing platforms along a
line. Stringing these platforms together created playable levels,
but they were visually unappealing and not much fun.

In contrast, the rhythm-based levels are more appealing and have
a better sense of flow. The length, density, and style of rhythm can
be modified for each rhythm group, leading to interesting, highly
varied levels.

8.2 Geometry Generation
Obviously any level generator requires a geometry generation
component; without one, there would be no levels to evaluate.

However, we can examine how our fine-grained, grammar-based
approach to geometry generation is an improvement over existing
techniques.

The rhythm-based generator provides 14 different kinds of
geometry for jumps, 5 different kinds of geometry for moves,
three different types of rhythm, four different lengths of rhythm,
and three different densities for rhythm. As a result, the number of
rhythm groups that can be generated is considerably larger than
the number of rhythm groups that a human could author. Infinite
Mario Bros! [11], which is the best platformer level generator to
our knowledge, has only five manually authored sections of a
level. While these can be combined in a potentially infinite
number of combinations, the space of levels we can create is
much bigger and more varied.

8.3 Critics
Critics are vital to the success of our level generator due to the
huge space of potential levels that can be created without them.
These levels can be quite repetitive, potentially with too much
space devoted entirely to running along long platforms or jumping
to kill many enemies. This is a common problem in using
grammars to generate content. The critics operate on a set of 1000
candidate levels and serve to ensure that the final generated levels
are not only playable, but also interesting. The evaluation of
critics answers how distance and component measures react to
different permutations of style parameters and how their existence
produces better levels.

The distance critic finds the best fit of a generated level to the
control line, as described in Section 5.1. Figure 10 shows the

Figure 8. A zoomed out screen shot of a level realized in Torque Game Builder.

Figure 9. A “rhythm group” cr eated with no sense of
rhythm. The algorithm for making this geometry places
platforms randomly along a line. Although the levels created
with this method are playable, they have no sense of flow and
are not visually appealing.

frequency of the measured distance from the control line given
different configurations of style parameters. In the figure, the x-
axis contains the bins of values returned by the distance critic, and
the y-axis denotes the frequency that a distance inside that bin was
recorded over a series of 1000 runs. Figure 11 provides context
for these distance values by giving example levels and the
distances assigned to them. Given these wildly different line
measures, it is clear that it is impossible to rely on a good fit to the
line through careful selection of style parameters alone. Therefore,
the distance critic is vital to ensure a fit to the control line.

The component critic attempts to minimize the distance between
observed and expected frequencies of components, as described in
Section 5.2. Figure 12 shows the frequency of these component
distances over 1000 runs. As expected, the frequency of generated
components is generally close to the component frequency
specified in the component style parameters. Figure 13 compares
the observed component frequency for two different generated

levels (each with its computed critic values) to the expected
component frequency. The level with the lower distance (critic
value 4.0) has a jump component frequency distribution that is
very close to the expected component frequency. The level with
high distance (critic value 83.4) is far from the expected
frequency; half of the generated jumps are of type 4, and many
jump types not present. Although the values for the component
critic have less variation than that of the line critic, it is still
important to have this critic as it ensures the best fit to the
designer’s requested style.

In combining the two critics, it is important to find a compromise
between the best fit to the line and the best fit to desired
component frequency. Figure 14 shows the distribution of the
combined critic measure with even weighting of the two critics.
Several observations can be made of this frequency distribution.
Even though two critics are being combined, the distribution still
has a distinct peak far from the lowest value. This highlights the
importance of generating a large number of levels, and then
choosing the one with lowest combined critic value.

An underlying assumption is that optimizing for both critic values
yields the best level. It is certainly possible that one of the 999
rejected levels is fun and interesting to play. The critics select for
the level that is closest to the intent of the level designer, as
expressed by the control line and style parameters. Other critics

Component Critic Values

0
50

100

150
200
250
300
350

400
450

10 20 30 40 50 60 70 80 90 100

Component Critic Value

F
re

q
u

en
cy

Figure 12. Frequency of component critic values over 1000
generated levels. The x-axis contains the bins of component critic
values, and the y-axis denotes the frequency that a critic value
falls into one of those bins. These frequencies stay roughly the
same regardless of style parameter choices.

Critic Distance Measures

0

200

400

600

800

10 30 50 70 90 110 130

Distance From the Line

F
re

q
u

en
cy

Straight Line,
Weighted Even
Sloped Down Line,
Weighted Up
Sloped Up Line,
Weighted Even

Figure 10. Frequency of distance from the control line with
varying style parameters. “Straight Line, Weighted Even”
denotes a straight line with all probabilities for jump
components weighted equally. “Sloped Down Line, Weighted
Up” is a line that slopes downward where probabilities for
jumping up are weighted highly. “Sloped Up Line, Weighted
Even” is a line that slopes upward where probabilities for
jump components are weighted equally.

Expected vs. Observed Component
Frequencies

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5 6 7 8 9 10 11 12 13

Type of Jump

O
cc

u
rr

en
ce Expected

Observed
(Critic Value: 4.0)

Observed
(Critic Value: 83.4)

Figure 13. This graph shows expected vs. observed component
frequencies for two different critic values. There are 13
different jump types in our generator; for simplicity, we denote
each of these by number on the x-axis. The y-axis shows the
percentage occurrence of each jump type given the critic value.

Figure 11. Examples of levels that are different distances
from the horizontal control line. The top level has a distance
measure of 2.1474, the middle a distance measure of 9.8020,
and the bottom a distance measure of 45.3052.

are possible, as are different valorizations of existing critics.

8.4 Global Passes
Our base representation for levels gives us the ability to reason
over both the actions the player is performing and the geometry
associated with them. We argue that this is vital for reasoning
over rhythm-based levels, and that reasoning over rhythm-based
levels is indeed vital. The two global passes we have implemented
– tying platforms to a common ground plane and decorating levels
with coins – are only examples of ways to reason over levels.
Global passes are also potentially useful for other analysis, such
as difficulty assessment.

9. CONCLUSION
This paper presents a method for automatically generating 2D
platformer levels, founded on the important concepts of rhythm
and pacing. However, also important in designing platformer
levels is an idea of how challenging a level will be for the player.
Levels often increase in difficulty as the game progresses, gently
introducing patterns and encouraging mastery before putting them
into a more demanding setting.

With this in mind, we initially considered a difficulty-based
approach for level generation, rather than our current rhythm-
based approach. This method would have been to assign difficulty
measures to different “idioms” for platformer levels, such as
jumping onto a platform with a moving enemy, or jumping across
a variable width gap. These “idioms” then would be fit together in
much the same manner as existing level generation techniques,
but with heuristics controlling the difficulty of each chunk which
would somehow contribute to the overall difficulty of the level.
However, we were concerned that this would not provide
sufficiently varied levels, and wanted to recognize the importance
of rhythm to platformers.

Difficulty analysis remains both significant and non-trivial;
indeed, it is one of many directions that this research could push
future work. One way we would like to explore this analysis is to
incorporate new critics into the generation process. Other future
work directions include pushing the limits of the rhythm-based
generator by adding more verbs and geometry types, and
performing an ethnographic study of level designers to determine
how to turn this research system into an authoring tool. Finally, it
would be extremely useful to have more quantitative methods of

analyzing levels; this is a research area which, to our knowledge,
has not been explored at all. Without such methods, it is difficult
to objectively compare our work to manually created levels.

The rhythm-based method for platformer level generation allows
for wide variety in generated, playable levels while providing for
a strong sense of pacing and flow. The system is easily extensible
for new verbs, geometry, and global adjustments to the level, and
provides a human designer with stylistic control over the
generated levels. We hope that our work will forward interest in
procedural level generation and analysis and result in a deeper
understanding of 2D platformer levels.

10. ACKNOWLEDGMENTS
We thank Phillip O’Shea, creator of the Torque Platformer Starter
Kit, for providing royalty-free art for use in our generated levels.

11. REFERENCES
[1] Adams, T. Slaves to Armok II: Dwarf Fortress (PC Game).

Published by Bay 12 Games, September 2008.

[2] Ashmore, C. and Nitsche, M. The Quest in a Generated World.
Proc. 2007 Digital Games Research Assoc. (DiGRA) Conference:
Situated Play, pp. 503-509. Tokyo, Japan. Sept. 24-28, 2007.

[3] Compton, K. and Mateas, M. Procedural Level Design for Platform
Games. Proc. 2nd Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE ’06), Stanford, CA, 2006.

[4] Csikszentmihaly, M. Flow: The Psychology of Optimal Experience.
Harper Collins, NY, 1991.

[5] Flagship Studios. 2007. Hellgate: London (PC Game). Published
by EA, October 31, 2007.

[6] Nelson, M. and Mateas, M. Towards Automated Game Design.
Proc. 10th Congress of the Italian Association for Artificial
Intelligence (AIIA 2007), Rome, Italy. September 10-13, 2007.

[7] Nicollet, V. 2004. Difficulty in Dexterity-Based Platform Games.
Gamedev.net. Last Accessed: December 11, 2008.
http://www.gamedev.net/reference/design/features/platformdiff/

[8] Nintendo. 1994. Donkey Kong Country (SNES).

[9] Nintendo. 1991. Super Mario World (SNES).

[10] Nitsche, M. et al. Designing Procedural Game Spaces: A Case
Study. Proc. FuturePlay 2006. London, ON. October 10-12, 2006.

[11] Persson, M. Infinite Mario Bros! (Online Game). Last Accessed:
December 11, 2008. http://www.mojang.com/notch/mario/

[12] Sega. 1991. Sonic the Hedgehog (Genesis).

[13] Smith, A. et al. Tableau Machine: A Creative Alien Presence. Proc.
2008 AAAI Spring Symposium on Creative Intelligent Systems, pp.
82-89. Menlo Park, CA, Mar 2008.

[14] Smith, G., Cha, M., and Whitehead, J. A Framework for Analysis of
2D Platformer Levels. Proc. 2008 ACM SIGGRAPH Sandbox
Symposium, Los Angeles, CA. August 9-10, 2008.

[15] Togelius, J., De Nardi, R., Lucas, S.M. Towards Automatic
Personalised Content Creation for Racing Games. Proc. IEEE
Symp. on Comp. Intelligence and Games 2007, April 1-5, 2007.

[16] Toy, M., Wichman, G., and Arnold, K. Rogue (PC Game).

[17] Wonka, P. et al. Instant Architecture. ACM Transactions on
Graphics, vol. 22, no. 4, pp 669-677. July 2003.

[18] Yu, Derek. 2009. Spelunky (PC Game).

Combined Critic Values

0

200

400

600

800

20 100 180

Value

F
re

q
u

en
cy

Straight Line,
Weighted Even
Sloped Down Line,
Weighted Up
Sloped Up Line,
Weighted Even

Figure 14. This graph shows the frequency for combined
critic values. The same style parameters have been used for
this graph as for Figure 10.

