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ABSTRACT  
We present a rhythm-based method for the automatic generation 
of levels for 2D platformers, where the rhythm is that which the 
player feels with his hands while playing. Levels are created using 
a grammar-based method: first generating rhythms, then 
generating geometry based on those rhythms. Generation is 
constrained by a set of style parameters tweakable by a human 
designer. The approach also minimizes the amount of content that 
must be manually authored, instead relying on geometry 
components that are included in the level designer’s tileset and a 
set of jump types. Our results show that this method produces an 
impressive variety of levels, all of which are fully playable. 

Categories and Subject Descriptors 
K.8.0 [Personal Computing]: General – Games.  I.2.4 [Artificial 
Intelligence]: Knowledge Representation Formalism and 
Methods – Representations (procedural and rule-based).  

General Terms 
Design, Human Factors. 

Keywords 
Games, levels, procedural generation, 2D platformers. 

1. INTRODUCTION 
Despite hundreds of successful games with interesting levels, the 
science behind level design is still imperfectly understood. As a 
result, existing methods for procedural level generation tend 
towards either terrain generation or fitting together large, hand-
authored chunks of a level using heuristics to determine their 
ordering. While these methods can produce pleasing results, they 
can also lead to repetitive levels with a high authorial burden. 
This is especially true for 2D platformers, where the entirety of 
the player’s experience is heavily influenced by the layout of 
levels. 

The main elements of 2D platformers are well known: platforms, 
enemies, collectibles, and hidden areas. However, the ways in 
which these elements can be combined to make an interesting 
level is highly variable. Surprisingly little has been written on 

how to create these levels; our recent work [14] provides a first 
step towards defining a vocabulary and analytical framework for 
examining these levels. 

We believe a key underlying idea behind 2D platformer level 
design is the notion of rhythm, and the timing and repetition of 
distinct user actions [4][7]. Players strive to navigate complicated 
playfields full of obstacles and collectible items; manually 
designed levels frequently contain a series of challenging jumps 
that must be timed perfectly. This paper presents a realization of 
this theory of level design in the form of an algorithm for 
automated level generation. An example of the kinds of levels it 
can produce is shown in Figure 1. In order to capture the 
importance of rhythm, the level generator is designed with a two-
tier, grammar-based approach, where the first tier is a rhythm 
generator, and the second tier creates geometry based on that 
rhythm. The separation of tiers ensures that the intended rhythm is 
always present, regardless of geometric representation.  

This work addresses several questions: 

1. Is rhythm-based level generation a feasible approach? 

2. Is the rhythm-based method for generating levels a 
significant improvement over existing approaches? 

3. How can human control be exerted over the generated 
levels? 

This work is similar to that of Nelson & Mateas in that its goal is 
not entirely to replace a human designer but rather to further 
understanding of deeper issues in level design and provide an 
“intelligent … design tool to support human … designers.” [6] 
The deeper issue of level design for platformers that is explored in 
this paper is the rhythm the player experiences during the course 
of a level. 
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Figure 1.  Part of one of the many 2D platformer levels that 
can be created by the rhythm-based level generator. 



Although the level generator itself is fully automated, it can take 
input from a human designer to restrict the kinds of levels that it 
will produce. The designer is provided a set of style “knobs”; 
these knobs dictate a general path through the level, the kinds of 
rhythms that can be generated, the types and frequencies of 
geometry components, and how collectible items (coins) are 
interspersed throughout the level. Adjusting these style parameters 
can drastically alter the generated levels. 

This paper presents the details of the rhythm-based generator, and 
examples of the kinds of levels it can produce. The primary 
contribution of this work is its use of a two-layer grammar-based 
geometry generation system using rhythms that are made up of 
verbs, and the use of these verbs as a driver for geometry 
generation. The level generator can be guided by a human 
designer who tweaks the style of levels. The paper also presents a 
set of algorithms that operate on the level as a whole, including 
critics that determine how good a level is according to style 
parameters, and a method for decorating a level with coins.  

2. RELATED WORK 
Ever since Rogue [16] became popular in the mid-1980s there has 
been interest in automated or procedural level generation. Even as 
recently as 2007, Hellgate: London [5] uses some of the same 
techniques to generate its levels. Rogue-like level generation 
operates on the principle of encoding level design knowledge into 
an algorithm that randomly generates levels. Dwarf Fortress [1] 
makes perhaps the most extensive use of procedural generation; 
everything in the game is automatically generated, including 
terrain, underground spaces, and even a world history. 

Within the genre of 2D platformers, Markus Persson’s Infinite 
Mario Bros! [11] generates levels by probabilistically choosing a 
few idiomatic pieces of platformer levels and fitting them 
together. While this technique produces levels that, on the surface 
at least, look and feel a great deal like Mario, over time it becomes 
apparent that there is very little variety between levels due to the 
repetition of idioms. Our work attempts to solve this problem by 
using a much finer granularity for geometry—the pieces that we 
fit together are much the same as those that would be found in a 
level designer’s tileset. The designer need only classify those 
pieces by a set of rules for when they should show up. One 
consequence is a lower authoring burden as compared to existing 
level generation techniques, while producing a larger variety of 
levels. 

Spelunky is another 2D platformer with procedurally generated 
levels [18]. This game uses Rogue-like level generation 
techniques to fill rooms with passages, treasure, and enemies. 
Spelunky belongs to a sub-genre of 2D platformers that is not 
well-suited to our approach of rhythm based level generation, as 
the challenges in the game are not dexterity-based, but rather 
exploration-based.  Examples of the dexterity-based platformers 
that we target are Super Mario World [9] or Sonic the Hedgehog 
[12]. 

Other work that specifically addresses procedural level generation 
for 2D platformers is that of Compton & Mateas [3]. They also 
split up levels into smaller sections and generate those sections 
from individual platform tilesets; they call their sections 
“patterns” where we call ours “rhythm groups”. Our work is quite 
different, though, in that our two-tiered approach to rhythm group 

generation, by explicitly separating rhythm generation and 
geometry generation, means we can represent more variety in 
levels than their pattern-building approach, in which rhythm is 
implicitly determined from geometry decisions. The use of style 
parameters also provides authorial control over our generated 
levels, missing in Compton & Mateas’s work. 

Recent work on procedural level generation in other game genres 
includes Togelius et al. [15], who take a difficulty-based approach 
for evolving levels for racing games. Their heuristics are based on 
creating more “fun” levels for players, whereas our critics operate 
given the designer’s goals for the level. 

Charbitat is an exploration into procedurally generated levels built 
by Michael Nietsche et al. [10]. Their work focuses on an 
evolving world that is based entirely on player actions; the 
components Charbitat uses to create a potentially infinite world 
are procedurally generated terrain tiles with randomly placed 
components within them. Although different from our work in 
terms of both genre and approach, a common idea is shared: a 
“procedurally determined context is necessary to structure and 
make sense of this [procedurally generated] content” [2]. While 
their context comes in the form of automatically generated quests, 
ours comes in the form of a rhythm for the geometry to follow and 
the style parameters we make available to a human designer. 

Although not in the realm of content generation for games, other 
grammar-based approaches are related. The Instant Architecture 
[17] project uses grammars for both architecture generation and 
ensuring the correct distribution of attributes. Tableau Machine 
[13], an art generator, uses a grammar for generating art, and their 
method for solving the problem of under-constrained results by 
generate-and-test was the inspiration for our own implementation 
of critics. 

3. SYSTEM OVERVIEW  
The rhythm-based approach for generating levels is described in 
Figure 2. It begins with a two-layered grammar-based approach 
for generating small chunks of a level, called rhythm groups [14]. 
The first stage creates a set of actions that the player will take, 

 

Figure 2. Level generation algorithm. Green squares indicate 
generated entities, while blue circles indicate constraints. 
Style parameters influence many aspects of level generation. 

 



constrained to form a rhythm. The second stage uses a grammar to 
convert this set of actions into corresponding geometry according 
to a set of physical constraints. 

To form a complete level, rhythm groups are fit together side by 
side, bridging them with a small platform that acts as a rest area 
for the player. Many different levels are generated, forming a pool 
of candidate levels which are then tested against a set of critics to 
determine the best level. This level then is referred to as a “base 
level”, which can be improved through decorating it with coins 
and tying its platforms to a common ground point. 

At all stages of level creation, style plays an important role. Style 
is represented as a set of parameters that a human designer can 
tweak. Parameters include the frequency of jumps per rhythm 
group, and how often a spring should be generated for a jump. 

4. RHYTHM GROUP GENERATION 
Rhythm groups are small, non-overlapping sections of a level that 
encapsulate a sense of rhythm for the player. For example, a 
rhythm group could be three short hops with minimal movement 
in between, or a repeated section of long runs with small jumps in 
between. To capture this sense of rhythm, rhythm and geometry 
are separated through a two-tiered generation system. All rhythm 
groups built off of the same rhythm may have a different 
geometric representation, but ultimately “feel” the same to the 
player. Rhythms maintain a length, density, beat pattern, and the 
ability to reflect or repeat that pattern. This section discusses the 
generation of rhythms and how they drive geometry generation 
through a set of physics constraints. 

4.1 Rhythms 
The rhythm generator chooses a set of verbs corresponding to 
player actions; currently, the verbs it can choose from are “move” 
and “jump”. It also chooses the times that these verbs should 
begin and end. This produces rhythms such as the following: 

 move 0 5 
 jump 2 2.25 
 jump 4 4.25 
 move 6 10 
 jump 6 6.5 
 jump 8 8.5 

In this example, the player starts moving at 0 seconds, and 

continues moving until 5 seconds. While moving, the player 
jumps once at the 2 second mark and again at the 4 second mark, 
each jump lasting .25 seconds. The length associated with the 
“jump” verb corresponds to the amount of time the player will 
hold down the “jump” button. Since different hold times influence 
the height of the avatar’s jump, it is important to keep these jump 
types distinct. For example, the player may hold the button down 
for only .25 seconds, resulting in a very short hop, or may hold it 
down much longer for a long jump. The example rhythm above 
has the player moving almost all the time, except for a 1 second 
“wait” at time 5 due to the lack of a movement or jump command 
occurring at that time. 

To introduce variety, the beat type, length, and density of the 
rhythms can be modified. The beat type refers to the way the start 
times of actions are organized to create rhythm. The current 
options are “regular”, the beats spaced evenly, “random”, the 
beats placed at random intervals, and “swing”, the beats placed in 
a swung beat as understood in music theory. The length can be 5, 
10, 15, or 20 seconds, and the density can be “low”, “medium”, or 
“high”. Density refers to the number of actions that should be 
performed by the player during the rhythm group. Figure 3 shows 
examples of the types of rhythms that can be generated. 

4.2 Geometry 
The geometry generator is responsible for taking rhythms from the 
rhythm generator and creating a possible interpretation for them. 
These interpretations can be wildly varied due to the number of 
options for each verb and the way jumps must be handled due to 
physics constraints. 

Received verbs are first converted into a list of movement states 
and a queue of jump commands. The movement states (“moving” 
or “waiting”) have a length associated with them, and the jump 
queue maintains the start time and length of each jump. For 
example, the rhythm: 

 move 0 4 
 jump 2 2.25 
 move 6 10 
 jump 6 6.25 
 jump 8 8.75 

forms the following set of states and jump queue. Figure 4 shows 
a graphical representation of this rhythm, with a solid line 
denoting movement, a dashed line denoting waiting, and hatch 
marks showing jumps. 

States: [4, moving], [2, waiting], [4, moving] 

Jumps: [2, short], [6, short], [8, long]  

However, the jump length merely tells how long the player holds 
the “jump” button; the actual time in the air varies based on which 
jump type is chosen; a jump across a flat gap takes considerably 
less time than a jump onto a spring. Therefore, jumps consume 
some amount of the movement state list at the time the jump 
occurs. For example, assuming there are only two jump options 

 

Figure 3.  Examples showing the effects of varying the 
length, type, and density of a rhythm.  Lines indicate the 
length of the rhythm, and hatch marks indicate the times 
at which an action will begin. 

 

Figure 4.  An example rhythm.  

 



(flat gap and spring), and a jump across a flat gap takes 0.5 
seconds and a jump onto a spring takes 1.5 seconds, processing 
the first jump in our example could result in one of the two 
configurations shown in Figure 5. 

The states that the jump consumes are used to determine how 
large the gap is, using the physics model; the rhythm of stopping 
and starting motion is still felt by the player while in mid-air. Note 
also that the type of jump that the geometry generator chooses at 
any time must be constrained by the start time for the next jump, 
ensuring that one jump finishes before the next jump begins. This 
keeps complete control over rhythms in the hands of the rhythm 
generator. 

4.3 Geometry Grammar 
The movement states that are not consumed by jumping and 
queued jumps form the non-terminals in the geometry generation 
grammar (Figure 7). The “waiting” state is meaningless on its 
own, as there must be something to wait for. Generating geometry 
for a wait state involves looking ahead in the state list. 

Figure 6 shows an example of an initial rhythm (top of Figure 6) 
and four different geometries that can be generated from it. 
Figures 6(b) and 6(d) show how moving platforms consume a 
wait-move-wait; other interpretations of two wait-moves in a row 
are shown in Figures 6(a) and 6(c). The dotted lines show how the 
first three jumps correspond to geometry; note that waits 
introduce variation to the physical length of the rhythm group and 
jumps that occur after waits no longer “line up” with the sample 
rhythm. This figure also show many different interpretations for 
each jump. 

4.4 Physics Constraints 
The physics model maintains information about the avatar’s 
capabilities and the different types of jumps available. The model 
includes the avatar’s size, maximum movement speed, initial 

jumping velocity, and the height the avatar can jump given a 
short, medium, or long jump button press. For jumps, the model 
includes the in-air time for each jump type, as well as the relative 
height difference for the two platforms on either side of a jump 
and the velocity imparted by a spring. Available slopes for 
platforms are also recorded. This model is ballistics based, 
extended to allow variable jump heights; the longer the player 
holds down the jump button, the longer the avatar will be in the 
air. This style is common for Mario-style platformers. More 
advanced player physics, such as double-jumping or wall-
jumping, are not supported. 

The physics model is responsible for providing the rhythm 
generator with information about the amount of time the avatar 
will be in the air for a given jump hold time. Its primary use, 
however, is to provide constraints for the geometry generator, thus 
ensuring that all generated levels are playable. 

5. CRITICS 
Complete levels are generated by piecing together rhythm groups 
and connecting them with a “rest area” platform. Rhythm groups 
can optionally be repeated before this rest area, which can provide 
additional challenge [7] and more visual consistency.  

move  0.00  8.00 

jump  2.00  2.25 

jump  4.00  4.25 

jump  6.00  6.50 

move 10.00 12.00 

move 14.00 20.00 

jump 16.00 16.25 

jump 18.00 18.25 

 

Figure 6.  Four possible geometry interpretations of the 
provided rhythm.  Small red boxes denote enemies to kill, 
small green boxes denote springs, blue boxes are enemies to 
avoid, large red boxes are stompers that follow the associated 
line, and platforms on green lines are moving platforms.  The 
large green platform is the joiner from this rhythm group to 
the next. 

 
     Moving  2.0 seconds 

     Jumping 0.5 seconds 

     Moving  1.5 seconds 

 
     Moving  2.0 seconds 

     Jumping 1.5 seconds 

     Moving  0.5 seconds 

Figure 5.  Two different types of jump can contribute to 
different movement and jump state lengths.  The blue area is 
the amount of time consumed by the jump being in the air. 



Unfortunately, a common problem with using design grammars is 
over-generation; even with constraints on rhythms and the types 
of jump, the level design space specified by the grammar is simply 
too large and results in many levels that are undesirable. Attempts 
to tighten the grammar to eliminate undesirable levels generally 
results in eliminating some number of desirable levels. The basic 
problem is that design grammars are good at capturing local 
constraints, but some design constraints are global. This problem 
is addressed by generating many levels and testing them against a 
few different critics to determine which is best. Given a generated 
level, a critic can perform tests over the entire level to determine 
how well a given global constraint is met. Our level generator has 
two critics: fitting to a designer-specified line, and ensuring the 
correct distribution of level components according to the 
designer’s style specification. The importance of each critic can 
be adjusted to alter the kinds of levels produced. 

5.1 Line Distance Critic 
One input a human designer provides to the level generator is a 
path that the level should follow, providing control over where the 
level should start and end and the general direction it should 
follow in between. This critic serves to rein in the large space of 
levels that can be generated and allow the human designer to 
assert additional control; existing, human-designed levels in Super 
Mario World [9] and Sonic the Hedgehog [12] tend to follow 
regular paths, rather than meander aimlessly through space. The 
path is specified as a set of line segments which are not 
necessarily connected end-to-end. In order to fit levels to this line, 
the distance between platform endpoints and the line are 
computed. Good levels are those with minimal overall distance. 

5.2 Component Style Critic 
There are many different parameters available for a human 
designer to alter, affecting all stages of the generation process; 
changing these parameters produces drastically different levels. 
Rhythm style parameters provide control over rhythm length, 
density, beat type, and beat pattern, as well as the frequency of a 

beat being a jump or a wait. In the geometry stage, there are 
parameters for the frequency of different jump types, and the 
probability of sloped platforms. These parameters contribute 
towards visual variation between levels, and are used in the 
component frequency critic. The path that a level should follow 
and the relative importance of following that path vs. having the 
correct frequency of components are style parameters for the critic 
stage. And finally, there is control for the numbers of coins in a 
group, the amount of space between those coins, and the 
probability for a coin to appear over a gap. 

Style parameters are used in geometry generation as a weight for 
how often each component should be chosen; however, these 
weights only guarantee that over a large number of rhythm groups 
the frequency of each component will asymptotically approach the 
probability of it appearing. Each rhythm group is created by 
pulling a relatively small number of geometric components from a 
pool of generate-able components, and then levels are created by 
choosing a small number of rhythm groups from a large number 
of randomly generated rhythm groups.  Therefore, there is no 
guarantee that the observed frequency of components will match 
the expected frequency, just as in a series of 10 coin flips there is 
no guarantee that 5 will come up heads and 5 will come up tails. 
The style critic is designed to ensure that the number of each type 
of component in the level best matches the probability distribution 
formed by the style parameters. 

This critic works by applying the chi-square goodness-of-fit test 
to each potential level, and choosing the level with the smallest 
test statistic, representing the level that has the closest component 
distribution to the desired style. 

5.3 Combining Critics 
There are many cases in which these two critics will contradict 
each other as to which level is best. For example, a level that is 
heavily weighted towards having springs will not fit a line that 
slopes only downward. To resolve this contradiction, the level 
with the lowest weighted average of the two critics is selected, 
where the weight on each critic determines its importance. 

6. GLOBAL PASSES 
Although most of the level can be created with local generation 
techniques, it is important to be able to reason over these levels. 
The rhythm-based generator has two “global pass” algorithms: 
tying platforms to a common ground plane, and decorating levels 
with coins. These algorithms reason over both the player states 
and the geometry associated with them. Tying platforms to the 
ground provides some visual consistency for levels and removes 
the possibility of the player unintentionally falling off platforms 
that are spaced apart from each other. 

Collectible items are treated as decoration over a level; this is 
stylistically consistent with Mario and Sonic-style platformers.  
However, games that treat collectible items as a primary goal, 
such as Donkey Kong Country [8], would perhaps be better 
served by placing coins during geometry generation.  

Two rules determine collectible item placement: 

1. Place a group of coins on a long platform of predetermined 
length that has no action other than move associated with it. 

Moving   �  Sloped | flat_platform 

Sloped  � Steep | Gradual 

Steep  � steep_slope_up | steep_slope_down 

Gradual  �  gradual_slope_up | gradual_slope_down 

Jumping  �  flat_gap 

           | (gap | no_gap) (jump_up | Down | spring | fall) 

          | enemy_kill 

          | enemy_avoid 

Down � jump_down_short | jump_down_medium | jump_down_long 

Waiting-Moving � stomper 

Waiting-Moving-Waiting -> moving_platform_vert 

                        | moving_platform_horiz 

Figure 7. Geometry generation grammar. Player states 
derived from the generated rhythms are non-terminals in 
this grammar. 



2. Reward the risk of jumping over a gap, and provide guidance 
for the ideal height of a jump, by placing one at the peak of 
jumps that go over gaps. 

It would also be easy to specify new, powerful rules for coin 
placement, such as along the path of a spring or fall to guide the 
player in the right direction, due to the separation of rhythm and 
geometry. 

7. CREATING PLAYABLE LEVELS 
In order to make the generated levels playable, they are translated 
from the generator's internal representation of a level to the 
Torque Game Builder's level format. Torque Game Builder is a 
2D game engine that is widely used for independent and 
commercial games. Because most platformers use tiles for visuals, 
the translation process requires reasoning about tiles and their 
size.  This would otherwise not be a concern of the generator as it 
uses simple shapes to represent its geometry. The generator 
ensures that all platform dimensions are a multiple of a specified 
tile size. Then when translating to Torque, a tilemap is created 
that accounts for drawing the correct tile for the geometry.  A 
section of one of our levels is shown in Figure 8. 

8. EVALUATION 
This section evaluates the usefulness of each component in the 
level generator, using a process of hypothetically removing each 
component, then evaluating the impact that removal has on the 
generated levels. 

8.1 Rhythm Generation 
We claim that generating rhythms is important for platformer level 
generation as it introduces structure and context for the levels. 
Purely randomly placed platforms are not sufficient for an 
interesting level, and remove the important concept of rhythm-
based challenge from the game. Figure 9 shows an early attempt at 
generating rhythm groups by randomly placing platforms along a 
line. Stringing these platforms together created playable levels, 
but they were visually unappealing and not much fun. 

In contrast, the rhythm-based levels are more appealing and have 
a better sense of flow. The length, density, and style of rhythm can 
be modified for each rhythm group, leading to interesting, highly 
varied levels. 

8.2 Geometry Generation 
Obviously any level generator requires a geometry generation 
component; without one, there would be no levels to evaluate. 

However, we can examine how our fine-grained, grammar-based 
approach to geometry generation is an improvement over existing 
techniques. 

The rhythm-based generator provides 14 different kinds of 
geometry for jumps, 5 different kinds of geometry for moves, 
three different types of rhythm, four different lengths of rhythm, 
and three different densities for rhythm. As a result, the number of 
rhythm groups that can be generated is considerably larger than 
the number of rhythm groups that a human could author. Infinite 
Mario Bros! [11], which is the best platformer level generator to 
our knowledge, has only five manually authored sections of a 
level. While these can be combined in a potentially infinite 
number of combinations, the space of levels we can create is 
much bigger and more varied. 

8.3 Critics 
Critics are vital to the success of our level generator due to the 
huge space of potential levels that can be created without them. 
These levels can be quite repetitive, potentially with too much 
space devoted entirely to running along long platforms or jumping 
to kill many enemies. This is a common problem in using 
grammars to generate content. The critics operate on a set of 1000 
candidate levels and serve to ensure that the final generated levels 
are not only playable, but also interesting. The evaluation of 
critics answers how distance and component measures react to 
different permutations of style parameters and how their existence 
produces better levels. 

The distance critic finds the best fit of a generated level to the 
control line, as described in Section 5.1. Figure 10 shows the 

 

Figure 8.  A zoomed out screen shot of a level realized in Torque Game Builder. 

Figure 9.  A “rhythm group” cr eated with no sense of 
rhythm. The algorithm for making this geometry places 
platforms randomly along a line. Although the levels created 
with this method are playable, they have no sense of flow and 
are not visually appealing. 



frequency of the measured distance from the control line given 
different configurations of style parameters. In the figure, the x-
axis contains the bins of values returned by the distance critic, and 
the y-axis denotes the frequency that a distance inside that bin was 
recorded over a series of 1000 runs. Figure 11 provides context 
for these distance values by giving example levels and the 
distances assigned to them. Given these wildly different line 
measures, it is clear that it is impossible to rely on a good fit to the 
line through careful selection of style parameters alone. Therefore, 
the distance critic is vital to ensure a fit to the control line. 

The component critic attempts to minimize the distance between 
observed and expected frequencies of components, as described in 
Section 5.2. Figure 12 shows the frequency of these component 
distances over 1000 runs. As expected, the frequency of generated 
components is generally close to the component frequency 
specified in the component style parameters. Figure 13 compares 
the observed component frequency for two different generated 

levels (each with its computed critic values) to the expected 
component frequency. The level with the lower distance (critic 
value 4.0) has a jump component frequency distribution that is 
very close to the expected component frequency. The level with 
high distance (critic value 83.4) is far from the expected 
frequency; half of the generated jumps are of type 4, and many 
jump types not present. Although the values for the component 
critic have less variation than that of the line critic, it is still 
important to have this critic as it ensures the best fit to the 
designer’s requested style. 

In combining the two critics, it is important to find a compromise 
between the best fit to the line and the best fit to desired 
component frequency. Figure 14 shows the distribution of the 
combined critic measure with even weighting of the two critics. 
Several observations can be made of this frequency distribution. 
Even though two critics are being combined, the distribution still 
has a distinct peak far from the lowest value. This highlights the 
importance of generating a large number of levels, and then 
choosing the one with lowest combined critic value. 

An underlying assumption is that optimizing for both critic values 
yields the best level. It is certainly possible that one of the 999 
rejected levels is fun and interesting to play. The critics select for 
the level that is closest to the intent of the level designer, as 
expressed by the control line and style parameters. Other critics 
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Figure 12.  Frequency of component critic values over 1000 
generated levels.  The x-axis contains the bins of component critic 
values, and the y-axis denotes the frequency that a critic value 
falls into one of those bins. These frequencies stay roughly the 
same regardless of style parameter choices. 

Critic Distance Measures

0

200

400

600

800

10 30 50 70 90 110 130

Distance From the Line 

F
re

q
u

en
cy

Straight Line,
Weighted Even
Sloped Down Line,
Weighted Up
Sloped Up Line,
Weighted Even

Figure 10.  Frequency of distance from the control line with 
varying style parameters.  “Straight Line, Weighted Even” 
denotes a straight line with all probabilities for jump 
components weighted equally. “Sloped Down Line, Weighted 
Up” is a line that slopes downward where probabilities for 
jumping up are weighted highly. “Sloped Up Line, Weighted 
Even” is a line that slopes upward where probabilities for 
jump components are weighted equally. 
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Figure 13.  This graph shows expected vs. observed component 
frequencies for two different critic values.  There are 13 
different jump types in our generator; for simplicity, we denote 
each of these by number on the x-axis.  The y-axis shows the 
percentage occurrence of each jump type given the critic value. 

 

Figure 11.  Examples of levels that are different distances 
from the horizontal control line.  The top level has a distance 
measure of 2.1474, the middle a distance measure of 9.8020, 
and the bottom a distance measure of 45.3052. 



are possible, as are different valorizations of existing critics. 

8.4 Global Passes 
Our base representation for levels gives us the ability to reason 
over both the actions the player is performing and the geometry 
associated with them. We argue that this is vital for reasoning 
over rhythm-based levels, and that reasoning over rhythm-based 
levels is indeed vital. The two global passes we have implemented 
– tying platforms to a common ground plane and decorating levels 
with coins – are only examples of ways to reason over levels. 
Global passes are also potentially useful for other analysis, such 
as difficulty assessment. 

9. CONCLUSION 
This paper presents a method for automatically generating 2D 
platformer levels, founded on the important concepts of rhythm 
and pacing. However, also important in designing platformer 
levels is an idea of how challenging a level will be for the player. 
Levels often increase in difficulty as the game progresses, gently 
introducing patterns and encouraging mastery before putting them 
into a more demanding setting.  

With this in mind, we initially considered a difficulty-based 
approach for level generation, rather than our current rhythm-
based approach. This method would have been to assign difficulty 
measures to different “idioms” for platformer levels, such as 
jumping onto a platform with a moving enemy, or jumping across 
a variable width gap. These “idioms” then would be fit together in 
much the same manner as existing level generation techniques, 
but with heuristics controlling the difficulty of each chunk which 
would somehow contribute to the overall difficulty of the level. 
However, we were concerned that this would not provide 
sufficiently varied levels, and wanted to recognize the importance 
of rhythm to platformers. 

Difficulty analysis remains both significant and non-trivial; 
indeed, it is one of many directions that this research could push 
future work. One way we would like to explore this analysis is to 
incorporate new critics into the generation process. Other future 
work directions include pushing the limits of the rhythm-based 
generator by adding more verbs and geometry types, and 
performing an ethnographic study of level designers to determine 
how to turn this research system into an authoring tool. Finally, it 
would be extremely useful to have more quantitative methods of 

analyzing levels; this is a research area which, to our knowledge, 
has not been explored at all. Without such methods, it is difficult 
to objectively compare our work to manually created levels. 

The rhythm-based method for platformer level generation allows 
for wide variety in generated, playable levels while providing for 
a strong sense of pacing and flow. The system is easily extensible 
for new verbs, geometry, and global adjustments to the level, and 
provides a human designer with stylistic control over the 
generated levels. We hope that our work will forward interest in 
procedural level generation and analysis and result in a deeper 
understanding of 2D platformer levels.  
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Figure 14.  This graph shows the frequency for combined 
critic values.  The same style parameters have been used for 
this graph as for Figure 10. 


