Rhythm-Based Level Generation for 2D Platformers

Gillian Smith, Mike Treanor, Jim Whitehead, Michael Mateas
Expressive Intelligence Studio
University of California, Santa Cruz
Santa Cruz, CA, USA

{gsmith, mtreanor, ejw, michaelm}@soe.ucsc.edu

ABSTRACT

We present a rhythm-based method for the autorgetieration
of levels for 2D platformers, where the rhythm hsitt which the
player feels with his hands while playing. Levels ereated using
a grammar-based method: first generating rhythnitsen t
generating geometry based on those rhythms. Geémeras
constrained by a set of style parameters tweakiapla human
designer. The approach also minimizes the amouotmient that
must be manually authored, instead relying on gégme
components that are included in the level designieset and a
set of jump types. Our results show that this mgthimduces an
impressive variety of levels, all of which are jufilayable.

Categories and Subject Descriptors

K.8.0 [Personal Computing: General -Games.|.2.4 [Artificial
Intelligence]: Knowledge Representation
Methods -Representations (procedural and rule-based).

General Terms
Design, Human Factors.

Keywords

Games, levels, procedural generation, 2D platfosmer

1. INTRODUCTION

Despite hundreds of successful games with inteigdévels, the
science behind level design is still imperfectlydarstood. As a
result, existing methods for procedural level gatien tend
towards either terrain generation or fitting togetharge, hand-
authored chunks of a level using heuristics to rdatee their
ordering. While these methods can produce pleassgits, they
can also lead to repetitive levels with a high auti burden.
This is especially true for 2D platformers, whehe entirety of
the player's experience is heavily influenced beg tayout of
levels.

The main elements of 2D platformers are well knoplatforms,
enemies, collectibles, and hidden areas. HoweVer,ways in
which these elements can be combined to make amesiing
level is highly variable. Surprisingly little hasén written on

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commerciavadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers orewistribute to lists,

requires prior specific permission and/or a fee.

ICFDG’09, April 26—-30, 2009, Orlando, FL, USA.

Copyright 2009 ACM 978-1-60558-437-9...$5.00.

Formalism and

Figure 1. Part of one of the many 2D platformer leels that
can be created by the rhythm-based level generator.

how to create these levels; our recent work [14jvjgles a first
step towards defining a vocabulary and analyticaiework for
examining these levels.

We believe a key underlying idea behind 2D platfarnevel
design is the notion of rhythm, and the timing aeafetition of
distinct user actions [4][7]. Players strive to igate complicated
playfields full of obstacles and collectible itemsanually
designed levels frequently contain a series oflehging jumps
that must be timed perfectly. This paper presermsaéization of
this theory of level design in the form of an aigon for
automated level generation. An example of the kiodevels it
can produce is shown ifrigure 1. In order to capture the
importance of rhythm, the level generator is desihwith a two-
tier, grammar-based approach, where the firstifea rhythm
generator, and the second tier creates geometgdbas that
rhythm. The separation of tiers ensures that ttemaed rhythm is
always present, regardless of geometric representat

This work addresses several questions:
1. Isrhythm-based level generation a feasible apprdac

2. Is the rhythm-based method for generating
significant improvement over existing approaches?

3. How can human control be exerted over the generated

levels?

This work is similar to that of Nelson & Mateastimat its goal is
not entirely to replace a human designer but rathefurther
understanding of deeper issues in level design @odide an
“intelligent ... design tool to support human ... desigs.” [6]

The deeper issue of level design for platformeas iexplored in
this paper is the rhythm the player experienceinduhe course
of a level.

levels a

Although the level generator itself is fully autaes, it can take
input from a human designer to restrict the kinfitewels that it
will produce. The designer is provided a set ofestknobs”;
these knobs dictate a general path through the, ltheskinds of
rhythms that can be generated, the types and freipse of
geometry components, and how collectible items ngoiare
interspersed throughout the level. Adjusting thetgke parameters
can drastically alter the generated levels.

This paper presents the details of the rhythm-bgseérator, and
examples of the kinds of levels it can produce. Thinary
contribution of this work is its use of a two-laygmammar-based
geometry generation system using rhythms that ademup of
verbs, and the use of these verbs as a driver émmgtry
generation. The level generator can be guided bluman
designer who tweaks the style of levels. The pajser presents a
set of algorithms that operate on the level as aleyhincluding
critics that determine how good a level is accaydio style
parameters, and a method for decorating a levél eains.

2. RELATED WORK

Ever since Rogue [16] became popular in the midd$38ere has
been interest in automated or procedural level igeioa. Even as
recently as 2007, Hellgate: London [5] uses somé¢hefsame
techniques to generate its levels. Rogue-like leyeheration
operates on the principle of encoding level de&igowledge into
an algorithm that randomly generates levels. Dvranftress [1]
makes perhaps the most extensive use of procedenaration;
everything in the game is automatically generated|uding

terrain, underground spaces, and even a worldriisto

Within the genre of 2D platformers, Markus Perssdnfinite
Mario Bros![11] generates levels by probabilistically choosing
few idiomatic pieces of platformer levels and figi them
together. While this technique produces levels, thatthe surface
at least, look and feel a great deal like Maricgraime it becomes
apparent that there is very little variety betwémrels due to the
repetition of idioms. Our work attempts to solvéstproblem by
using a much finer granularity for geometry—thecpi that we
fit together are much the same as those that woalltbund in a
level designer’s tileset. The designer need onfssify those
pieces by a set of rules for when they should shupw One
consequence is a lower authoring burden as comparexisting
level generation techniques, while producing adargariety of
levels.

Spelunkyis another 2D platformer with procedurally genedat
levels [18]. This game uses Rogue-like level geimara
techniques to fill rooms with passages, treasunel enemies.
Spelunkybelongs to a sub-genre of 2D platformers thatds n
well-suited to our approach of rhythm based leveagation, as
the challenges in the game are not dexterity-babatl,rather
exploration-based. Examples of the dexterity-bgsletformers
that we target are Super Mario World [9] or Sotie Hedgehog
[12].

Other work that specifically addresses procedunatll generation
for 2D platformers is that of Compton & Mateas [They also
split up levels into smaller sections and genethtse sections
from individual platform tilesets; they call theisections
“patterns” where we call ours “rhythm groups”. Quork is quite
different, though, in that our two-tiered approacirhythm group

generation, by explicitly separating rhythm gerierat and
geometry generation, means we can represent maretyvan
levels than their pattern-building approach, in athrhythm is
implicitly determined from geometry decisions. Tage of style
parameters also provides authorial control over generated
levels, missing in Compton & Mateas’s work.

Recent work on procedural level generation in otfeane genres
includes Togelius et al. [15], who take a diffiguliased approach
for evolving levels for racing games. Their heucistare based on
creating more “fun” levels for players, whereas oritics operate
given the designer’s goals for the level.

Charbitat is an exploration into procedurally geted levels built
by Michael Nietsche et al. [10]. Their work focusea an
evolving world that is based entirely on playeriats; the
components Charbitat uses to create a potentiafigite world
are procedurally generated terrain tiles with ranigoplaced
components within them. Although different from owork in
terms of both genre and approach, a common ideshdeged: a
“procedurally determined context is necessary tacsire and
make sense of this [procedurally generated] cohf@ht While
their context comes in the form of automaticallyeeated quests,
ours comes in the form of a rhythm for the geomegdrfpllow and
the style parameters we make available to a hurasigmker.

Although not in the realm of content generation games, other
grammar-based approaches are related. The Instahitécture
[17] project uses grammars for both architectuneegation and
ensuring the correct distribution of attributesblBau Machine
[13], an art generator, uses a grammar for gemeratit, and their
method for solving the problem of under-constraimesults by
generate-and-test was the inspiration for our awplémentation
of critics.

3. SYSTEM OVERVIEW

The rhythm-based approach for generating levetiescribed in
Figure 2. It begins with a two-layered grammar-blaapproach
for generating small chunks of a level, called hinytgroups [14].
The first stage creates a set of actions that thgep will take,

Rhythm Group

Critics

Base Leval

Global Passes

Final Level

Figure 2. Level generation algorithm. Green squares indica&
generated entities, while blue circles indicate catraints.
Style parameters influence many aspects of levelmgration.

constrained to form a rhythm. The second stage aiggammar to
convert this set of actions into corresponding getoynaccording
to a set of physical constraints.

To form a complete level, rhythm groups are fitdthger side by
side, bridging them with a small platform that aatsa rest area
for the player. Many different levels are generafetming a pool
of candidate levels which are then tested agaisst af critics to
determine the best level. This level then is ref@no as a “base
level”, which can be improved through decoratingvith coins
and tying its platforms to a common ground point.

At all stages of level creation, style plays an amant role. Style
is represented as a set of parameters that a hdesgner can
tweak. Parameters include the frequency of jumpsrpgthm
group, and how often a spring should be generated jump.

4. RHYTHM GROUP GENERATION

Rhythm groups are small, non-overlapping sectidres level that
encapsulate a sense of rhythm for the player. &kample, a
rhythm group could be three short hops with minimalvement
in between, or a repeated section of long runs srithll jumps in
between. To capture this sense of rhythm, rhythoh ggometry
are separated through a two-tiered generationraysi rhythm
groups built off of the same rhythm may have a edéht
geometric representation, but ultimately “feel” tekame to the
player. Rhythms maintain a length, density, bedteps and the
ability to reflect or repeat that pattern. Thistget discusses the
generation of rhythms and how they drive geometgegation
through a set of physics constraints.

4.1 Rhythms

The rhythm generator chooses a set of verbs camespg to
player actions; currently, the verbs it can chdose are “move”
and “jump”. It also chooses the times that thesibwehould
begin and end. This produces rhythms such as tloeving:

move 0 5
junp 2 2.25
junp 4 4.25
move 6 10
junp 6 6.5
junp 8 8.5

In this example, the player starts moving at O sdsp and
| 2015, regular, low density

| 2015, regular, medium density

| 2015, r2gular, high density

i 155, swing, medium density
| | 10s, random, high density
Figure 3. Examples showing the effects of varyintghe

length, type, and density of a rhythm. Lines indiate the
length of the rhythm, and hatch marks indicate thetimes
at which an action will begin.

continues moving until 5 seconds. While moving, thlayer
jumps once at the 2 second mark and again at #eeend mark,
each jump lasting .25 seconds. The length assdciatéh the
“jlump” verb corresponds to the amount of time tHayer will
hold down the “jump” button. Since different holthés influence
the height of the avatar's jump, it is importankeep these jump
types distinct. For example, the player may hokl klatton down
for only .25 seconds, resulting in a very short,lmpmay hold it
down much longer for a long jump. The example rhythbove
has the player moving almost all the time, exceptaf 1 second
“wait” at time 5 due to the lack of a movement wmp command
occurring at that time.

To introduce variety, the beat type, length, andsitg of the

rhythms can be modified. The beat type refers ¢ovihy the start
times of actions are organized to create rhythme Thrrent
options are “regular”, the beats spaced evenlyndoan”, the

beats placed at random intervals, and “swing” ltbats placed in
a swung beat as understood in music theory. ThgtHeran be 5,
10, 15, or 20 seconds, and the density can be {ltwédium”, or

“high”. Density refers to the number of actionsttishould be
performed by the player during the rhythm grouguFé 3 shows
examples of the types of rhythms that can be gésutra

4.2 Geometry
The geometry generator is responsible for takiyghrns from the
rhythm generator and creating a possible interpogtdor them.
These interpretations can be wildly varied dueh® number of
options for each verb and the way jumps must belledndue to
physics constraints.

Received verbs are first converted into a list @vement states
and a queue of jump commands. The movement statesig”
or “waiting”) have a length associated with themdahe jump
gqueue maintains the start time and length of eaechpj For
example, the rhythm:

nove 0 4

junp 2 2.25

nove 6 10

junp 6 6.25

junp 8 8.75
forms the following set of states and jump queuguie 4 shows
a graphical representation of this rhythm, with alids line
denoting movement, a dashed line denoting waitargl hatch
marks showing jumps.

States:[4, noving], [2, waiting], [4, noving]
Jumps:[2, short], [6, short], [8, |ong]

However, the jump length merely tells how long ghayer holds
the “jump” button; the actual time in the air varigased on which
jump type is chosen; a jump across a flat gap takesiderably
less time than a jump onto a spring. Therefore,pgionsume
some amount of the movement state list at the tingejump
occurs. For example, assuming there are only twpjoptions

short short long
jurng jump jurmp
111
0 2 4 G a 10

Figure 4. An example rhythm.

flst

gap
L I
1 2 4
Moving 2.0 seconds
Junpi ng 0.5 seconds
Moving 1.5 seconds

spring
I [
1 2 4

Moving 2.0 seconds
Junpi ng 1.5 seconds
Moving 0.5 seconds

Figure 5. Two different types of jump can contribue to
different movement and jump state lengths. The ble area it
the amount of time consumed by the jump being the air.

(flat gap and spring), and a jump across a flat gd@s 0.5
seconds and a jump onto a spring takes 1.5 secpnaisgssing
the first jump in our example could result in onktloe two
configurations shown in Figure 5.

The states that the jump consumes are used tonde&how

large the gap is, using the physics model; thehrhybf stopping
and starting motion is still felt by the player Vehin mid-air. Note

also that the type of jump that the geometry gdnerehooses at
any time must be constrained by the start timettfernext jump,
ensuring that one jump finishes before the nextjlmagins. This
keeps complete control over rhythms in the handkhefrhythm

generator.

4.3 Geometry Grammar

The movement states that are not consumed by jgmaird
queued jumps form the non-terminals in the geomgéneration
grammar (Figure 7). The “waiting” state is meanasgl on its
own, as there must be something to wait for. Geaimgrgeometry
for a wait state involves looking ahead in theestast.

Figure 6 shows an example of an initial rhythm (6§g-igure 6)
and four different geometries that can be generditeth it.

Figures 6(b) and 6(d) show how moving platforms stome a
wait-move-wait; other interpretations of two waibwes in a row
are shown in Figures 6(a) and 6(c). The dottedIst@w how the
first three jumps correspond to geometry; note thatits

introduce variation to the physical length of thgthm group and
jumps that occur after waits no longer “line upttwithe sample
rhythm. This figure also show many different intetations for
each jump.

4.4 Physics Constraints

The physics model maintains information about thata's
capabilities and the different types of jumps alai. The model
includes the avatar's size, maximum movement spaatal

move 0.00 8.00
jump 2.00 2.25
junp 4.00 4.25
junp 6.00 6.50

move 10.00 12.00
move 14.00 20. 00
junp 16.00 16.25
junp 18.00 18.25

Rhythm

i :IIIIHIIII#

Figure 6. Four possible geometry interpretations of th
provided rhythm. Small red boxes denote enemies tkill,
small green boxes denote springflue boxes are enemies
avoid, large red boxes are stompers that follow the assated
line, and platforms on green lines are moving platfrms. The
large green platform is the joiner from this rhythm group to
the next.

jumping velocity, and the height the avatar can gugiven a
short, medium, or long jump button press. For junips model
includes the in-air time for each jump type, ashaslthe relative
height difference for the two platforms on eith@esof a jump
and the velocity imparted by a spring. Availablepds for
platforms are also recorded. This model is batéstbased,
extended to allow variable jump heights; the lonte player
holds down the jump button, the longer the avatéirbe in the
air. This style is common for Mario-style platfomae More
advanced player physics, such as double-jumpingwal-

jumping, are not supported.

The physics model is responsible for providing thgthm

generator with information about the amount of tithe avatar
will be in the air for a given jump hold time. Ifgimary use,
however, is to provide constraints for the geomgamerator, thus
ensuring that all generated levels are playable.

5. CRITICS

Complete levels are generated by piecing togetinghm groups
and connecting them with a “rest area” platformytRim groups
can optionally be repeated before this rest arbahican provide
additional challenge [7] and more visual consisgenc

Moving > Sloped | flat_platform

Sloped - Steep | Gradual

Steep - steep_slope_up | steep_slope_down
Gradual - gradual_slope_up | gradual_slope_down

Jumping -> flat_gap
| (gap | no_gap) (jump_up | Down | spring | fall)
| enemy_kill
| enemy_avoid

Down - jump_down_short | jump_down_medium | jump_down_long
Waiting-Moving - stomper

Waiting-Moving-Waiting -> moving_platform_vert

| moving_platform_horiz

Figure 7. Geometry generation grammar. Player tates
derived from the generated rhythms are norterminals in
this grammar.

Unfortunately, a common problem with using desigangmars is
over-generation; even with constraints on rhythmg the types
of jump, the level design space specified by tlargmar is simply
too large and results in many levels that are uratds. Attempts
to tighten the grammar to eliminate undesirableelegenerally
results in eliminating some number of desirablelevThe basic
problem is that design grammars are good at cagfuiocal

constraints, but some design constraints are gldita$ problem
is addressed by generating many levels and tedtarg against a
few different critics to determine which is bestvéh a generated
level, a critic can perform tests over the entirgel to determine
how well a given global constraint is met. Our legenerator has
two critics: fitting to a designer-specified linand ensuring the
correct distribution of level components according the

designer’s style specification. The importance atecritic can
be adjusted to alter the kinds of levels produced.

5.1 Line Distance Critic

One input a human designer provides to the leveegaor is a
path that the level should follow, providing coritoeer where the
level should start and end and the general dinecitioshould
follow in between. This critic serves to rein irettarge space of
levels that can be generated and allow the humaignkr to
assert additional control; existing, human-desigeedlIs in Super
Mario World [9] and Sonic the Hedgehog [12] tendfadiow
regular paths, rather than meander aimlessly thra@mace. The
path is specified as a set of line segments whidh raot
necessarily connected end-to-end. In order t@¥iels to this line,
the distance between platform endpoints and the lare
computed. Good levels are those with minimal oveliatance.

5.2 Component Style Critic

There are many different parameters available fohuman
designer to alter, affecting all stages of the gath@n process;
changing these parameters produces drasticallgrdiff levels.
Rhythm style parameters provide control over rhytlength,
density, beat type, and beat pattern, as well agrédguency of a

beat being a jump or a wait. In the geometry stdere are
parameters for the frequency of different jump gpand the
probability of sloped platforms. These parameteomitribute

towards visual variation between levels, and aredus the
component frequency critic. The path that a leveludd follow

and the relative importance of following that path having the
correct frequency of components are style paraméberthe critic
stage. And finally, there is control for the nuntef coins in a
group, the amount of space between those coins, thad
probability for a coin to appear over a gap.

Style parameters are used in geometry generatienveeght for
how often each component should be chosen; howehese
weights only guarantee that over a large numbehnyhm groups
the frequency of each component will asymptoticapproach the
probability of it appearing. Each rhythm group isated by
pulling a relatively small number of geometric campnts from a
pool of generate-able components, and then levelgr@ated by
choosing a small number of rhythm groups from gdanumber
of randomly generated rhythm groups. Thereforerehis no
guarantee that the observed frequency of componéhtmatch

the expected frequency, just as in a series ofold flips there is
no guarantee that 5 will come up heads and 5 withe up tails.
The style critic is designed to ensure that the memof each type
of component in the level best matches the proibablistribution

formed by the style parameters.

This critic works by applying the chi-square gooshief-fit test

to each potential level, and choosing the levehwiite smallest
test statistic, representing the level that hasctbgest component
distribution to the desired style.

5.3 Combining Critics

There are many cases in which these two critick agihtradict
each other as to which level is best. For examplievel that is
heavily weighted towards having springs will nat di line that
slopes only downward. To resolve this contradictitre level
with the lowest weighted average of the two crifiesselected,
where the weight on each critic determines its irrgrae.

6. GLOBAL PASSES

Although most of the level can be created with lageneration
techniques, it is important to be able to reasoer dhese levels.
The rhythm-based generator has two “global pasgbriahms:

tying platforms to a common ground plane, and catoay levels
with coins. These algorithms reason over both tlagep states
and the geometry associated with them. Tying platéoto the
ground provides some visual consistency for leaeld removes
the possibility of the player unintentionally fallj off platforms

that are spaced apart from each other.

Collectible items are treated as decoration ovéeval; this is
stylistically consistent with Mario and Sonic-stytgatformers.
However, games that treat collectible items as imgny goal,
such as Donkey Kong Country [8], would perhaps le¢teb
served by placing coins during geometry generation.

Two rules determine collectible item placement:

1. Place a group of coins on a long platform of predeined
length that has no action other than move assakiaité it.

Figure 8. A zoomed out screen shot of a level réd in Torque Game Builder.

2. Reward the risk of jumping over a gap, and progdilance
for the ideal height of a jump, by placing onela peak of
jumps that go over gaps.

It would also be easy to specify new, powerful sufer coin
placement, such as along the path of a springlotofguide the
player in the right direction, due to the separaid rhythm and
geometry.

7. CREATING PLAYABLE LEVELS

In order to make the generated levels playablsy, sine translated
from the generator's internal representation ofewell to the
Torque Game Builder's level format. Torque Gameldguiis a

2D game engine that is widely used for independend

commercial games. Because most platformers useftitevisuals,
the translation process requires reasoning abtag &nd their
size. This would otherwise not be a concern ofgiieerator as it
uses simple shapes to represent its geometry. Emerator
ensures that all platform dimensions are a multifla specified
tile size. Then when translating to Torque, a tdenis created
that accounts for drawing the correct tile for gmometry. A
section of one of our levels is shown in Figure 8.

8. EVALUATION

This section evaluates the usefulness of each coempan the
level generator, using a process of hypotheticaliyoving each
component, then evaluating the impact that remtwa on the
generated levels.

8.1 Rhythm Generation

We claim that generating rhythms is important fiatformer level
generation as it introduces structure and contextttie levels.
Purely randomly placed platforms are not sufficidnt an
interesting level, and remove the important conaepthythm-
based challenge from the game. Figure 9 showsrinagtempt at
generating rhythm groups by randomly placing plat® along a
line. Stringing these platforms together createalygble levels,
but they were visually unappealing and not much fun

In contrast, the rhythm-based levels are more dipgeand have
a better sense of flow. The length, density, ayie stf rhythm can
be modified for each rhythm group, leading to iegting, highly
varied levels.

8.2 Geometry Generation
Obviously any level generator requires a geomegpegation
component; without one, there would be no levelevaluate.

However, we can examine how our fine-grained, gramboased
approach to geometry generation is an improvemesit existing
techniques.

The rhythm-based generator provides 14 differemdsi of
geometry for jumps, 5 different kinds of geometor fmoves,
three different types of rhythm, four different ¢ghs of rhythm,
and three different densities for rhythm. As a leslie number of
rhythm groups that can be generated is considetabdgr than
the number of rhythm groups that a human couldauthfinite

Mario Bros! [11], which is the best platformer Iégenerator to
our knowledge, has only five manually authored ieest of a
level. While these can be combined in a potentidtifinite

number of combinations, the space of levels we c@ate is
much bigger and more varied.

8.3 Critics

Critics are vital to the success of our level gatmrdue to the
huge space of potential levels that can be creattut them.
These levels can be quite repetitive, potentiallthwoo much
space devoted entirely to running along long ptatfoor jumping
to kill many enemies. This is a common problem ising
grammars to generate content. The critics operat set of 1000
candidate levels and serve to ensure that the deraérated levels
are not only playable, but also interesting. Thelgation of
critics answers how distance and component measeees to
different permutations of style parameters and tweir existence
produces better levels.

The distance critic finds the best fit of a genedatevel to the
control line, as described in Section 5.1. Figueshows the

—

]

==

Figure 9. A “rhythm group” cr eated with no sense ¢
rhythm. The algorithm for making this geometry places
platforms randomly along a line. Although the levels create
with this method are playable, they haveno sense of flow an
are not visually appealing.

Critic Distance Measures

B Straight Line,
Weighted Even

O Sloped Down Line
Weighted Up

O Sloped Up Line,
Weighted Even

Frequency

N Iy [«2] [0

o o o o

o o o o
|

.nﬂkﬂ]ﬂﬂﬂﬂ

10 30 50 70 90 110 130
Distance From the Line

o

Figure 10. Frequency of distance from the contrdline with
varying style parameters. “Straight Line, Weighted Even”
denotes a straight line with all probabilities for jump
components weighted equally:Sloped Down Line, Weightec
Up” is a line that slopes downward whereprobabilities for
jumping up are weighted highly.“Sloped Up Line, Weightec
Even” is a line that slopes upward where probabilies for
jump components are weighted equall

frequency of the measured distance from the cotitnel given

different configurations of style parameters. le figure, the x-
axis contains the bins of values returned by tltadce critic, and
the y-axis denotes the frequency that a distargidarthat bin was
recorded over a series of 1000 runs. Figure 1ligesvcontext
for these distance values by giving example lewvatsl the
distances assigned to them. Given these wildlyedfit line

measures, it is clear that it is impossible to miya good fit to the
line through careful selection of style parametdosie. Therefore,
the distance critic is vital to ensure a fit to timatrol line.

The component critic attempts to minimize the diseabetween
observed and expected frequencies of componentigsasibed in
Section 5.2. Figure 12 shows the frequency of ttoeseponent
distances over 1000 runs. As expected, the frequaingenerated
components is generally close to the componentuéecy
specified in the component style parameters. Fig@reompares
the observed component frequency for two differgaberated

Component Critic Values

450
400]
350
E; 300
@ 250
>
o 200
o
T 150
100 :‘7
50
o T B S I —— ‘
10 20 30 40 5 60 70 80 90 100
Component Critic Value
Figure 12. HRequency of component critic values over 10(

generated levels. The jaxis contains the bins of component criti
values, and the yaxis denotes the frequency that a critic valt
falls into one of those bins. These frequencies stay roughliie
same regardless of style parameter choices.

o

Figure 11. Examples of levels that are different idtance:
from the horizontal control line. The top level ha a distanct
measure of 2.1474, the middle a distance measure @80,
and the bottom a distance measure of 45.3052.

levels (each with its computed critic values) te tbxpected
component frequency. The level with the lower dista (critic
value 4.0) has a jump component frequency disiobuthat is
very close to the expected component frequency. l@ba with

high distance (critic value 83.4) is far from thepected
frequency; half of the generated jumps are of Wpand many
jump types not present. Although the values for ¢bmponent
critic have less variation than that of the lindticy it is still

important to have this critic as it ensures thet Hasto the
designer’s requested style.

In combining the two critics, it is important tmél a compromise
between the best fit to the line and the best ditdesired
component frequency. Figure 14 shows the distaouf the
combined critic measure with even weighting of the critics.
Several observations can be made of this frequdistsibution.
Even though two critics are being combined, theritistion still
has a distinct peak far from the lowest value. Tghlights the
importance of generating a large number of levalsd then
choosing the one with lowest combined critic value.

An underlying assumption is that optimizing for batitic values
yields the best level. It is certainly possiblettbae of the 999
rejected levels is fun and interesting to play. Thtcs select for
the level that is closest to the intent of the ledesigner, as
expressed by the control line and style parame@iiser critics

Expected vs. Observed Component
Frequencies

o g'g [Expected
e o
o 04
= 03 W Observed
3 0.2 (Critic Value: 4.0)
S * gl il mat nad @ dlg, DO
0 A e e (Critic Value: 83.4)

1 2 3 45 6 7 8 9 1011 12 13

Type of Jump

Figure 13. This graph shows expected vs. observedmponen
frequencies for two different critic values. There are 12
different jump types in our generabr; for simplicity, we denote
each of these by number on the x-axis. Theaxis shows th
percentage occurrence of each jump type given theitic value.

Combined Critic Values

800
-, 600 - B Straight Line,
e Weighted Even
8 400 O Sloped Down Line,
g Weighted Up
L O Sloped Up Line,
200 T Weighted Even
ol‘ml‘-ﬂ ‘W‘H‘”‘ ‘
20 100 180
Value

Figure 14 This graph shows the frequency for combine
critic values. The same style parameters have beesal for
this graph as for Figure 1(.

are possible, as are different valorizations o$taxg critics.

8.4 Global Passes

Our base representation for levels gives us thétyako reason
over both the actions the player is performing &mel geometry
associated with them. We argue that this is vital reasoning
over rhythm-based levels, and that reasoning dwgthm-based
levels is indeed vital. The two global passes weshmplemented
— tying platforms to a common ground plane and osow levels
with coins — are only examples of ways to reasoar devels.
Global passes are also potentially useful for otralysis, such
as difficulty assessment.

9. CONCLUSION

This paper presents a method for automatically rgeing 2D

platformer levels, founded on the important consegft rhythm

and pacing. However, also important in designingtfptmer

levels is an idea of how challenging a level wil for the player.
Levels often increase in difficulty as the gamegpesses, gently
introducing patterns and encouraging mastery bgfaténg them

into a more demanding setting.

With this in mind, we initially considered a diffitty-based
approach for level generation, rather than ourenrrhythm-
based approach. This method would have been tgradificulty
measures to different “idioms” for platformer leselsuch as
jumping onto a platform with a moving enemy, or jning across
a variable width gap. These “idioms” then wouldfibéogether in
much the same manner as existing level generaéiohniques,
but with heuristics controlling the difficulty ofaeh chunk which
would somehow contribute to the overall difficulty the level.
However, we were concerned that this would not jole@v
sufficiently varied levels, and wanted to recogrtize importance
of rhythm to platformers.

Difficulty analysis remains both significant and muivial;
indeed, it is one of many directions that this agsle could push
future work. One way we would like to explore thisalysis is to
incorporate new critics into the generation proc€&her future
work directions include pushing the limits of theythm-based
generator by adding more verbs and geometry typesl
performing an ethnographic study of level desigrtierdetermine
how to turn this research system into an authaod; Finally, it
would be extremely useful to have more quantitathethods of

analyzing levels; this is a research area whictguoknowledge,
has not been explored at all. Without such methibds,difficult
to objectively compare our work to manually credtgkls.

The rhythm-based method for platformer level geti@naallows
for wide variety in generated, playable levels wiproviding for
a strong sense of pacing and flow. The systemsiyeaxtensible
for new verbs, geometry, and global adjustmentheolevel, and
provides a human designer with stylistic controleowvthe
generated levels. We hope that our work will fomvarterest in
procedural level generation and analysis and result deeper
understanding of 2D platformer levels.

10. ACKNOWLEDGMENTS
We thank Phillip O’Shea, creator of the Torque fetater Starter
Kit, for providing royalty-free art for use in ogenerated levels.

11. REFERENCES

[1] Adams, T. Slaves to Armok Il: Dwarf Fortress (P@n@).
Published by Bay 12 Games, September 2008.

[2] Ashmore, C. and Nitsche, M. The Quest in a Geadréforld.
Proc. 2007 Digital Games Research Assoc. (DiGRA)f€ence:
Situated Playpp. 503-509. Tokyo, Japan. Sept. 24-28, 2007.

[3] Compton, K. and Mateas, M. Procedural Level DegigrPlatform
Games.Proc. 29 Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE 'Q&tanford, CA, 2006.

[4] Csikszentmihaly, M.Flow: The Psychology of Optimal Experience
Harper Collins, NY, 1991.

[5] Flagship Studios. 2007. Hellgate: London (PC Ganreblished
by EA, October 31, 2007.

[6] Nelson, M. and Mateas, M. Towards Automated Gamesidh.
Proc. 10th Congress of the Italian AssociationAatificial
Intelligence (AllA 2007)Rome, Italy. September 10-13, 2007.

[7] Nicollet, V. 2004. Difficulty in Dexterity-BaseBlatform Games.
Gamedev.net. Last Accessed: December 11, 2008.
http://www.gamedev.net/reference/design/featuratfpmdiff/

[8] Nintendo. 1994. Donkey Kong Country (SNES).
[9] Nintendo. 1991. Super Mario World (SNES).

[10] Nitsche, M. et al. Designing Procedural Game Sgat€ase
Study. Proc. FuturePlay 2006 London, ON. October 10-12, 2006.

[11] Persson, M. Infinite Mario Bros! (Online Game)ast Accessed:
December 11, 2008. http://www.mojang.com/notchiatar

[12] Sega. 1991. Sonic the Hedgehog (Genesis).

[13] Smith, A. et al. Tableau Machine: A Creative AlleresenceProc.
2008 AAAI Spring Symposium on Creative Intelliggygtemspp.
82-89. Menlo Park, CA, Mar 2008.

[14] sSmith, G., Cha, M., and Whitehead, J. A FrameviorkAnalysis of
2D Platformer LevelsProc. 2008 ACM SIGGRAPH Sandbox
SymposiumLos Angeles, CA. August 9-10, 2008.

[15] Togelius, J., De Nardi, R., Lucas, S.M. Towardsoatic
Personalised Content Creation for Racing Gan®esc. IEEE
Symp. on Comp. Intelligence and Games 2@@ril 1-5, 2007.

[16] Toy, M., Wichman, G., and Arnold, K. Rogue (PC @m

[17] Wonka, P. et al. Instant Architectur&CM Transactions on
Graphics vol. 22, no. 4, pp 669-677. July 2003.

[18] Yu, Derek. 2009. Spelunky (PC Game).

